Geometry.Net - the online learning center
Home  - Scientists - Diocles

e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 100    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Diocles:     more books (21)
  1. Essai Sur les Propriétés de la Nouvelle Cissoïde,: Et sur les rapports de cette courbe, tant avec la cissoïde de dioclès, qu'avec un grand nombre d'autres courbes (French Edition) by Rallier, 2009-04-27
  2. Diocles of Carystus: A Collection of the Fragments With Translation and Commentary (Studies in Ancient Medicine) by Philip J. Van Der Eijk, 2001-08-01
  3. The Number One A-Z Family Health Adviser by Diocles, 1996-04
  4. Home Medical Encyclopaedia (Paperfronts) by Diocles, 1989-11-14
  5. Lusitania: Viriathus, Lusitanian Language, Lusitanian War, Audax, Ditalcus and Minurus, Gaius Appuleius Diocles, Cornelius Bocchus
  6. The home medical encyclopedia (Paperfront series) by Diocles, 1965
  7. Cissoid of Diocles
  8. Diocles of Carystus: An entry from Gale's <i>Science and Its Times</i> by Evelyn B. Kelly, 2001
  9. Date de Naissance Inconnue (Ve Siècle Av. J.-C.): Hippocrate, Sophocle, Empédocle, Marcus Furius Camillus, Alcibiade, Dioclès, Mélissos (French Edition)
  10. Ancient Euboeans: Isaeus, Lycophron, Callias of Chalcis, Euphraeus, Diocles of Carystus, Euphorion of Chalcis, Charidemus
  11. Diocles: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  12. Essai Sur Les Propriétés De La Nouvelle Cissoïde: Et Sur Les Rapports De Cette Courbe, Tant Avec La Cissoïde De Dioclès, Qu'Avec Un Grand Nombre D'Autres Courbes (French Edition) by Rallier, 2009-12-31
  13. Date de Décès Inconnue (Ive Siècle Av. J.-C.): Hippocrate, Thucydide, Dioclès, Publius Cornelius Rufinus, Platon le Comique, Cléarque (French Edition)
  14. Meneur: Aurige de Delphes, Cocher, Postillon, Ratuména, Crescens, Gaius Appuleius Diocles, Publius Aelius Gutta Calpurnianus (French Edition)

1. Cisoide De Diocles
Cisoide de diocles. Fecha de primera versión 0204-98
http://www.terra.es/personal/jftjft/Geometria/Diferencial/Curvas/Enelplano/Cisoi
Cisoide de Diocles
Fecha de primera versión: 02-04-98
Fecha de última actualización: 04-12-00 La cisoide es el lugar geométrico de los puntos M, tal que OM = PQ. (ver dibujo) La ecuación genérica de la cisoide de Diocles en coordenadas cartesianas es: y = x /(a -x) La ecuación en coordenadas polares es: r = a sen q /cos q La ecuación genérica de la cisoide de Diocles en ecuaciones paramétricas es: x = a sen q y = a sen q /cos q La asíntota es: x = a El área entre la curva y la asíntota es: A = 3/4 p a Dibuja la curva. En la página http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html encontrarás todo sobre las curvas. Principal

2. No. 837: Diocles
diocles' parabolic mirror in an old Arabic book that make our civilization run, and the people whose ingenuity created them. Who was diocles? We don't really know.
http://www.uh.edu/engines/epi837.htm
No. 837: DIOCLES
by John H. Lienhard
Click here for audio of Episode 837. Today, we focus the rays of the sun. The University of Houston's College of Engineering presents this series about the machines that make our civilization run, and the people whose ingenuity created them. W ho was Diocles? We don't really know. All we have is a text he wrote over 2000 years ago. It's not even in his own tongue. It was written in AD 1462 by a careless scribe who left only spaces where figures should've gone. But it's enough to tell us that it was Diocles who invented the parabolic mirror. Who was Diocles? Historian G.J. Toomer picks through this skimpy legacy this ancient text, titled On Burning Mirrors . Most of what we knew of Diocles came from reference to his work by a noted 6th-century mathematician. Now we finally read this copy of his book, penned 1600 years after the fact. Toomer does his historical detective work. He decides that Diocles flourished in Greece just after 200 BC. He was a mathematician a geometer. Toomer takes us through the text, recreating the figures. We read Diocles' opening: The burning-mirror surface submitted to you is the surface bounding the figure produced by a section of a ... cone ... revolved about [its axis].

3. Encyclopædia Britannica
A resident of Athens, diocles was the first to write medical treatises in Attic Greek rather than in the Ionic Greek
http://www.britannica.com/eb/article?eu=31017

4. Diocles
diocles. Born about 240 BC in Carystus (now Káristos), Euboea (now Evvoia),Greece Died about 180 BC. diocles was a contemporary of Apollonius.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Diocles.html
Diocles
Born:
Died: about 180 BC
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Diocles was a contemporary of Apollonius . Practically all that was knew about him until recently was through fragments of his work preserved by Eutocius in his commentary on the famous text by Archimedes On the sphere and the cylinder. In this work we are told that Diocles studied the cissoid as part of an attempt to duplicate the cube . It is also recorded that he studied the problem of Archimedes to cut a sphere by a plane in such a way that the volumes of the segments shall have a given ratio. The extracts quoted by Eutocius from Diocles' On burning mirrors showed that he was the first to prove the focal property of a parabolic mirror. Although Diocles' text was largely ignored by later Greeks, it had considerable influence on the Arab mathematicians, in particular on al-Haytham . Latin translations from about 1200 of the writings of al-Haytham brought the properties of parabolic mirrors discovered by Diocles to European mathematicians. Recently, however, some more information about Diocles' life has come to us from the Arabic translation of Diocles'

5. Diocles
Biography of diocles (240BC180BC) Next. Main index. diocles was a contemporary of Apollonius.
http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Diocles.html
Diocles
Born:
Died: about 180 BC
Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Diocles was a contemporary of Apollonius . Practically all that was knew about him until recently was through fragments of his work preserved by Eutocius in his commentary on the famous text by Archimedes On the sphere and the cylinder. In this work we are told that Diocles studied the cissoid as part of an attempt to duplicate the cube . It is also recorded that he studied the problem of Archimedes to cut a sphere by a plane in such a way that the volumes of the segments shall have a given ratio. The extracts quoted by Eutocius from Diocles' On burning mirrors showed that he was the first to prove the focal property of a parabolic mirror. Although Diocles' text was largely ignored by later Greeks, it had considerable influence on the Arab mathematicians, in particular on al-Haytham . Latin translations from about 1200 of the writings of al-Haytham brought the properties of parabolic mirrors discovered by Diocles to European mathematicians. Recently, however, some more information about Diocles' life has come to us from the Arabic translation of Diocles'

6. Cissoid
Cissoid of diocles. Cartesian equation y 2 = x 3 /(2a x). The Cissoid of dioclesis the roulette of the vertex of a parabola rolling on an equal parabola.
http://www-gap.dcs.st-and.ac.uk/~history/Curves/Cissoid.html
Cissoid of Diocles
Cartesian equation: y x a x Polar equation: r a tan( )sin( Click below to see one of the Associated curves. Definitions of the Associated curves Evolute
Involute 1
Involute 2 ... Caustic curve wrt another point
If your browser can handle JAVA code, click HERE to experiment interactively with this curve and its associated curves. This curve (meaning 'ivy-shaped') was invented by Diocles in about 180 BC in connection with his attempt to duplicate the cube by geometrical methods. The name first appears in the work of Geminus about 100 years later. Fermat and Roberval constructed the tangent in 1634. Huygens and Wallis found, in 1658, that the area between the curve and its asymptote was 3 a . From a given point there are either one or three tangents to the cissoid. The Cissoid of Diocles is the roulette of the vertex of a parabola rolling on an equal parabola. Newton gave a method of drawing the Cissoid of Diocles using two line segments of equal length at right angles. If they are moved so that one line always passes through a fixed point and the end of the other line segment slides along a straight line then the mid-point of the sliding line segment traces out a Cissoid of Diocles Diocles was a contemporary of Nicomedes . He studied the cissoid in his attempt to solve the problem of finding the length of the side of a cube having volume twice that of a given cube. He also studied the problem of Archimedes to cut a sphere by a plane in such a way that the volumes of the segments shall have a given ratio.

7. Books On Diocles
Book Search for diocles. fair as the young palmtree that diocles saw beside the
http://namesearchsix.tripod.com/diocles.html
Get Five DVDs for $.49 each. Join now. Tell me when this page is updated Diocles
Search for books related to: Diocles Diocles Search Book Search Bestselling Books Childrens Books
Search for other names All Products Books Popular Music Classical Music Video DVD Electronics Software
var test=0; document.write("<");document.write("! "); document.write(" ");document.write(">"); Nordic Web Design
About Diocles The once beautiful ruins carpeted with grass and wild flowers have
been doubly desecrated by persons, academic persons, having
authority and a plentiful lack of taste. The slim mountain-ashes,
fair as the young palm-tree that Diocles saw beside the
shrine of Apollo in Delos, have been cut down by the academic
persons to whom power is given. Modified text originally written by Andrew Lang.

8. Cissoid Of Diocles
Cissoid of diocles. diocles showed that if in addition you allow the useof the cissoid, then one can construct . Here is how it works.
http://www.geocities.com/famancin/cissoid_diocles.html
Cissoid of Diocles Here is the definition of cissoid of two curves. Cissoid[ Let O be a fixed point and let L be a line through O intersecting the curves C and C at Q and Q . The locus of points P and P on L such that OP = OQ - OQ = Q Q is the cissoid of C and C with respect to O. The cissoid of Diocles is the cissoid of a circle and a tangent line, with respect to a fixed point O on the circumference opposite the point of tangency A. The screenshot below shows the cissoid drawn using Jeometry Let O be the origin and x = a be the line tangent to the circle. Let Ô be the angle BÔA in the picture above. Considering the right triangles OBA and CAO, we have OP OC OB a secÔ - a cosÔ a sinÔ tanÔ Hence the polar equation of the cissoid is r = a sinÔ tanÔ Then the Cartesian equation follows immediately by substitution, y (a - x) = x This is the same equation we found when considering the pedal of a parabola with respect to its vertex (let a = - We would like to find a parametric rapresentation of the curve. To do that, we note that the cissoid of Diocles is a cubic curve with a cusp in the origin, so we can find a rational parametrization by intersecting the cissoid with the line

9. Diocles Search
diocles search by the name of diocles. Modified text originally written by Andrew Lang.
http://www.geocities.com/namebookstwo/diocles.html
Book Search Diocles
Toys
Books Audio Music ... DVD's
Begin searching for: Diocles Diocles Books Browse Books
Search for other titles All Products Books Popular Music Classical Music Video DVD Electronics Software Design by NordicWebDesign.net var test=0; document.write("<");document.write("! "); document.write(" ");document.write(">");
About Diocles Thirty years have passed, like a watch in the night, since the
earlier of the two sets of verses here reprinted, Ballades in Blue
China, was published. At first there were but twenty-two Ballades;
ten more were added later. They appeared in a little white vellum
wrapper, with a little blue Chinese singer copied from a porcelain
jar; and the frontispiece was a little design by an unknown artist
by the name of Diocles. Modified text originally written by Andrew Lang.

10. I1069 DIOCLES ( - )
diocles. REFN 80438. Father HELENUS Family 1 + BASSANUS. _ PRIAM _ _ HELENUS_ _ diocles _ _ _ INDEX
http://www.geocities.com/linniev2/eg/d0001/g0000014.html

11. Cissoid Of Diocles -- From MathWorld
Cissoid of diocles, A cubic curve invented by diocles in about 180 BC in connectionwith his attempt to duplicate the cube by geometrical methods.
http://mathworld.wolfram.com/CissoidofDiocles.html

Geometry
Curves Plane Curves Algebraic Curves ... Geometric Construction
Cissoid of Diocles

A cubic curve invented by Diocles in about 180 BC in connection with his attempt to duplicate the cube by geometrical methods. The name "cissoid" first appears in the work of Geminus about 100 years later. Fermat and Roberval constructed the tangent in 1634. Huygens and Wallis found, in 1658, that the area between the curve and its asymptote was MacTutor Archive ). From a given point there are either one or three tangents to the cissoid. Given an origin O and a point P on the curve, let S be the point where the extension of the line OP intersects the line and R be the intersection of the circle of radius a and center with the extension of OP . Then the cissoid of Diocles is the curve which satisfies OP = RS The cissoid of Diocles is the roulette of a parabola vertex of a parabola rolling on an equal parabola Newton gave a method of drawing the cissoid of Diocles using two line segments of equal length at right angles . If they are moved so that one line always passes through a fixed point and the end of the other line segment slides along a straight line, then the midpoint of the sliding line segment traces out a cissoid of Diocles.

12. Cissoid
Cissoid of diocles. Cartesian equation y2 = x3/(2a x)
http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cissoid.html
Cissoid of Diocles
Cartesian equation: y x a x Polar equation: r a tan( )sin( Click below to see one of the Associated curves. Definitions of the Associated curves Evolute
Involute 1
Involute 2 ... Caustic curve wrt another point
If your browser can handle JAVA code, click HERE to experiment interactively with this curve and its associated curves. This curve (meaning 'ivy-shaped') was invented by Diocles in about 180 BC in connection with his attempt to duplicate the cube by geometrical methods. The name first appears in the work of Geminus about 100 years later. Fermat and Roberval constructed the tangent in 1634. Huygens and Wallis found, in 1658, that the area between the curve and its asymptote was 3 a . From a given point there are either one or three tangents to the cissoid. The Cissoid of Diocles is the roulette of the vertex of a parabola rolling on an equal parabola. Newton gave a method of drawing the Cissoid of Diocles using two line segments of equal length at right angles. If they are moved so that one line always passes through a fixed point and the end of the other line segment slides along a straight line then the mid-point of the sliding line segment traces out a Cissoid of Diocles Diocles was a contemporary of Nicomedes . He studied the cissoid in his attempt to solve the problem of finding the length of the side of a cube having volume twice that of a given cube. He also studied the problem of Archimedes to cut a sphere by a plane in such a way that the volumes of the segments shall have a given ratio.

13. Cissoid Of Diocles Inverse Curve -- From MathWorld
Cissoid of diocles Inverse Curve, If the cusp of the cissoid of diocles istaken as the inversion center, then the cissoid inverts to a parabola.
http://mathworld.wolfram.com/CissoidofDioclesInverseCurve.html

Geometry
Curves Plane Curves Cissoids ... Inverse Curves
Cissoid of Diocles Inverse Curve

If the cusp of the cissoid of Diocles is taken as the inversion center , then the cissoid inverts to a parabola
Author: Eric W. Weisstein
Wolfram Research, Inc.

14. Diocles (2nd Century B.C.) -- From Eric Weisstein's World Of Scientific Biograph
diocles (2nd century BC), This entry contributed by Margherita Barile.Greek mathematician who invented the cissoid of diocles.
http://scienceworld.wolfram.com/biography/Diocles.html

Branch of Science
Mathematicians Nationality Greek ... Barile
Diocles (2nd century B.C.)

This entry contributed by Margherita Barile Greek mathematician who invented the cissoid of Diocles This discovery appears in the collection of his writings that has reached us in an Arabic transcription entitled On Burning Mirrors ; the original has been lost. Diocles created the famous curve as an auxiliary tool for cube duplication For this construction problem, unrealizable with straightedge and compass he also presented a solution based on two intersecting parabolas Almost nothing is known about Diocles' life. His work contains a hint that he could have spent some time in Arcadia. A careful examination of the text, and the comparison with other sources allowed the historians to locate him as a contemporary of Apollonius , although Diocles' treatment of conic sections does not clearly indicate whether he ever had access to Apollonius' comprehensive work on the subject. On the other hand, he certainly knew some results by Archimedes: his construction of the mean proportional is explicitly intended as a completion of some of the latter's geometric proofs.
References MacTutor History Topics. "How Do We Know About Greek Mathematicians?"

15. Cissoid Of Diocles
Cissoid of diocles. Here is the definition of cissoid of two curves.
http://www.geocities.com/CapeCanaveral/Hall/3131/cissoid_diocles.html
Cissoid of Diocles Here is the definition of cissoid of two curves. Cissoid[ Let O be a fixed point and let L be a line through O intersecting the curves C and C at Q and Q . The locus of points P and P on L such that OP = OQ - OQ = Q Q is the cissoid of C and C with respect to O. The cissoid of Diocles is the cissoid of a circle and a tangent line, with respect to a fixed point O on the circumference opposite the point of tangency A. The screenshot below shows the cissoid drawn using Jeometry Let O be the origin and x = a be the line tangent to the circle. Let Ô be the angle BÔA in the picture above. Considering the right triangles OBA and CAO, we have OP OC OB a secÔ - a cosÔ a sinÔ tanÔ Hence the polar equation of the cissoid is r = a sinÔ tanÔ Then the Cartesian equation follows immediately by substitution, y (a - x) = x This is the same equation we found when considering the pedal of a parabola with respect to its vertex (let a = - We would like to find a parametric rapresentation of the curve. To do that, we note that the cissoid of Diocles is a cubic curve with a cusp in the origin, so we can find a rational parametrization by intersecting the cissoid with the line

16. Xah: Special Plane Curves: Cissoid Of Diocles
Table of Contents. Cissoid of diocles. Parallels of a cissoid of diocles diocles(~250~100 BC) invented this curve to solve the doubling of the cube problem.
http://www.xahlee.org/SpecialPlaneCurves_dir/CissoidOfDiocles_dir/cissoidOfDiocl
Table of Contents
Cissoid of Diocles
Parallels of a cissoid of Diocles Mathematica Notebook for This Page History Description Formulas ... Related Web Sites
History
Diocles (~250-~100 BC) invented this curve to solve the doubling of the cube problem. (aka the Delian problem) The name cissoid (ivy-shaped) came from the shape of the curve. Later the method used to generate this curve is generalized, and we call curves generated this way as cissoids From Thomas L. Heath's Euclid's Elements translation (1925) (comments on definition 2, book one): This curve is assumed to be the same as that by means of which, according to Eutocius, Diocles in his book On burning-glasses solved the problem of doubling the cube. From Robert C. Yates' Curves and their properties (1952): As early as 1689, J. C. Sturm, in his Mathesis Enucleata, gave a mechanical device for the constructions of the cissoid of Diocles. From E.H.Lockwood A book of Curves (1961): The name cissoid ('Ivy-shaped') is mentioned by Geminus in the first century B.C., that is, about a century after the death of the inventor Diocles. In the commentaries on the work by Archimedes On the Sphere and the Cylinder , the curve is referred to as Diocles' contribution to the classic problem of doubling the cube. ... Fermat and Roberval constructed the tangent (1634); Huygens and Wallis found the area (1658); while Newton gives it as an example, in his

17. Xah: Special Plane Curves: Cissoid
History. Cissoid is the generalization of Cissoid of diocles. Related Web Sites. seeGeneric Reference Page. MacTutor Famous Curve Index (on cissoid of diocles)
http://www.xahlee.org/SpecialPlaneCurves_dir/Cissoid_dir/cissoid.html
Table of Contents
Cissoid
History Description Formulas Properties ... Related Web Sites
History
Cissoid is the generalization of Cissoid of Diocles . (*XahNote: Who generalized it? Around what era?*)
Description
Cissoid is a method of deriving a new curve based on two (or one) given curves C1, C2, and a fixed point O. A curve derived this way may be called the cissoid of C1 and C2 with the pole O. Step-by-step description:
  • Given two curves C1 and C2, and given a fixed point O. Let P1 be a point on C1. Draw a line L passing O and P1. Let the intersection of L and C2 be P2. Mark a point Q on line L, such that distance[O,Q]==distance[P1,P2]. The locus of Q (as P1 moves on C1) is the cissoid of C1 and C2 with the pole O.
  • Note: There are two points on line L such that distance[O,Q]==distance[P1,P2]. The two points are symmetric around point O, so either one will generate the same cissoid. Also, if L and C2 have more than one intersections, then we can label additional points P3, P4,... and the cissoid may have loops.)
    Formulas
    Properties
    Cissoids of two Lines or two Circles
    The cissoid of two concentric circles with pole on center is two concentric circles centered on pole. The cissoid of two circles in general is a combinations of various oval, figure-eight, or droplet-shaped curves.

    18. Famous Curves Index
    Cayley's Sextic. Circle. Cissoid of diocles. Cochleoid. Conchoid. Conchoid of de Sluze
    http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html
    Famous Curves Index
    Click on the name of a curve below to see its history and some of its associated curves. Astroid
    Bicorn

    Cardioid

    Cartesian Oval
    ...
    Witch of Agnesi

    Anyone with the Mathematical MacTutor system can investigate these curves and their associated curves in an interactive way. Similarly, anyone whose browser knows what to do with Java can experiment in the same way. Here is a list of those curves for which this facility is available Enter a word or phrase: Main index Definitions of Associated Curves
    History Topics Index
    Birthplace Maps ... Search Form
    JOC/EFR November 2000 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/Curves/Curves.html

    19. Cissoid Of Diocles
    The Cissoid of diocles diocles is one of many mathematicians who have attemptedto construct a cube whose volume is exactly twice that of a given cube.
    http://curvebank.calstatela.edu/diocles/diocles.htm
    Click on the thumbnail
    images below to see
    experimental solar collectors
    near Barstow, California
    focus the sun's rays on a central tower where heat
    is converted to electricity.
    The famous Belvedere Apollo at the top
    of this column is a Roman copy
    of a much older Greek statue. This marble is now in the
    Pio Clementino Museum at the Vatican (Rome, Italy).
    The Burning Mirrows wall painting is from the Stanzino delle Matematiche in the Galleria degli Uffizi (Florence, Italy). Painted by Giulio Parigi (1571-1635) in the years 1599-1600.
    The Cissoid of Diocles Back to . . . Curve Bank Home This section . . . Another attempt to solve one of the three famous construction problems from Antiquity. Biographical Sketch Diocles is one of many mathematicians who have attempted to construct a cube whose volume is exactly twice that of a given cube. This is often called the "Delian" problem or "duplication of the cube". Legend: A number of legends surround this construction challenge. The good citizens of Athens were being devastated by a plague. History records that in 430 BC they sought advice from the oracle at Delos on how to rid their community of this pestilence. The oracle replied that the altar of Apollo, which was in the form of a cube, should be doubled. Thoughtless builders merely doubled the edges of the cube. Unfortunately the volume of the altar increased by a factor of 8. The oracle insisted the gods had been angered. As if to confirm this reprimand, the plague grew worse. Other delegations consulted Plato. When informed of the oracle's admonition, Plato told the citizens "the god has given this oracle, not because he wanted an altar of double the size, but because he wished in setting this task before them, to reproach the Greeks for their neglect of mathematics and their contempt of geometry."

    20. References For Diocles
    References for the biography of diocles References for diocles. Biography in Dictionary of Scientific Biography (New York 19701990).
    http://www-gap.dcs.st-and.ac.uk/~history/References/Diocles.html
    References for Diocles
  • Biography in Dictionary of Scientific Biography (New York 1970-1990).
  • Biography in Encyclopaedia Britannica. Books:
  • T L Heath, A History of Greek Mathematics (2 Vols.) (Oxford, 1921).
  • G J Toomer, Diocles On Burning Mirrors, Sources in the History of Mathematics and the Physical Sciences (New York, 1976). Articles:
  • J P Hogendijk, Diocles and the geometry of curved surfaces, Centaurus
  • O Neugebauer, Note on Diocles' "burning mirror", in From ancient omens to statistical mechanics, Acta Hist. Sci. Nat. Med. (Copenhagen, 1987), 37-42. Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR April 1999 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Diocles.html
  • A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 100    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter