Geometry.Net - the online learning center
Home  - Scientists - Kaluza Theodor

e99.com Bookstore
  
Images 
Newsgroups
Page 2     21-40 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kaluza Theodor:     more detail
  1. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  2. Theodor Kaluza
  3. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  4. Las dimensiones desconocidas: nuestro concepto familiar del universo es que tiene 3 dimensiones, 4 si se añade el tiempo, pero según varias teorías ahora ... percibirlas.: An article from: Contenido by Juan José Morales, 2006-09-01

21. ZÝG-ZAG ÖÐRETÝSÝ'NÝN GELÝÞÝMÝ
theodor kaluza (18851945). KMA mektuplari etkisiyle, Schwarzschildile ayni yil (1905) Müslüman olan Alman bilim adami “theodor
http://zigzag-aiberg.hypermart.net/bol05/bol05m.htm
THEODOR KALUZA KMA mektuplarý etkisiyle, Schwarzschild ile ayný yýl (1905) Müslüman olan Alman bilim adamý “Theodor Franz Eduard Kaluza” Nur suresi ’nde belirtilen “elektromanyetizma” ilahi misalini bizzat Tesla ’dan devir alarak, bu kuvvetin, “dört boyutlu uzay-zaman” dan deðil, “beþinci bir üst boyuttan” , yani “beþ boyutlu bir uzay-zaman relativitesi” (K80) sonucu oluþtuðunu bulan kiþidir (D36). Kaluza ’nýn teorisinde, uzayýn dört boyutu ( Einstein ’inkiler) geniþlemeye açýlmýþ, beþinci boyut ise geniþlemeyip, sarmal bir “tünel” olarak kývrýlý kalmýþtýr. Einstein buna karþý çýkar ve uzayýn geniþlemediðini pekiþtirmek için, içinde kozmolojik bir sabit bulunan bir formül ortaya koyar (K64). Bunun üzerine, KMA mektuplarý Rusya ’ya kadar uzanýr ve orada, Volga Alman Cumhuriyeti ’nden “Alexander Friedmann” ý Ýslamiyet’e kazandýrýr ve Einstein ’e karþý harekete geçirir.

22. 80-year-old Theory May Explain Dark Matter
This approach is similar to a promising 1921 theory that failed two German mathematicians theodor kaluza and Oskar Klein when they tried to use a fifth
http://www.sciencenewsweek.com/articles/fifthforce.htm

23. Kaluza Theory: Part 2
2. theodor kaluza, Zum Unitätsproblem der Physik, Sitzungsberichteder Preussische Akademie der Wissenschaft, (1921) 966972.
http://ourworld.compuserve.com/homepages/Paraphys/kal2x.htm
Publication copy for YGGDRASIL: The Journal of Paraphysics
BEST VIEWED IN HTML 3.0 or above III: Discussion and Criticism Kaluza was able to derive both the trajectories of charged particles and uncharged particles within the framework of the coherent space-time structure of his model. This was done in a simple and straight forward manner. As has been shown, his theory resulted in parametric representations in five-dimensional space which coincide with families of geodesics, each of which depends on different values of the ratio e/m. Previously, this result could not have been obtained in the Riemannian space of General Relativity, but had to be carried out in different Finsler spaces, dependent on the different values of e/m. So, Kaluza's theory was a success in what it attempted to accomplish: the unification of the electromagnetic and gravitational fields. However, the success of Kaluza's theory has been greatly diminished by some serious criticisms of the theory. Due to these criticisms, the theory has not been generally adopted and is still looked upon by many with disfavor. All criticisms of Kaluza's theory deal either directly or indirectly with Klauza's basic assumption of a fifth dimension. Many physicists consider a formalism such as the one used in the theory as artificial since the universe as sensed is four-dimensional. The artificiality appears since Kaluza's five-dimensional assumption is presented only as a mathematical formalism and the fifth coordinate is totally devoid of any physical content. "The success of a language adopted to a five-dimensional manifold is, ..., only a way of concealing the lack of developments truly adaptable to the four-dimensional universe, which remains the true physical universe."

24. Kaluza Theory: Part 1
two attempts to derive a unified field theory as an extension to the General Theoryof Relativity were made by Herman Weyl (1918) 1 and theodor kaluza (1921).
http://ourworld.compuserve.com/homepages/Paraphys/kal1x.htm
Publication copy for YGGDRASIL: The Journal of Paraphysics
BEST VIEWED IN HTML 3.0 or above UP, UP, AND AWAY!
The fifth dimension in physics by James E. Beichler
The following essay contains abstract mathematical concepts which may tend to discourage the casual reader. However, anyone can read and comprehend this article even if they do not have the mathematical background necessary to understand the mathematical concepts which appear in the second section. There is enough information in the other sections that any interested reader can learn about Kaluza's theory by carefully reading the paper. I: Historical Development The first two attempts to derive a unified field theory as an extension to the General Theory of Relativity were made by Herman Weyl (1918) and Theodor Kaluza (1921). Over the years, each of these attempts has engendered one of the main groupings of unified field theories. Weyl sought to alter the geometry of the continuum which consists of the combined results of these two scientists' efforts toward unification, has come to represent what is considered to be the most advanced classical unified field theory. On the other hand, Kaluza's theory kept the Riemannian space-time continuum of the General Theory of Relativity intact while extending the field structure by the addition of a fifth dimension. Like Weyl's theory, Kaluza's ideas have led to many extensions and modifications, but unlike Weyl's theory, the five-dimensional structure built by Kaluza has never been proven wrong and still stands as an independent theory as it was originally conceived. Although it has yet to be found completely unsound, without scientific merit, it has suffered from very serious criticism which have hampered its credibility in the scientific community.

25. Stephen Wolfram: A New Kind Of Science -- Index K
K^0 particle and time reversal violation, 1019 K_33 nonplanar graph, 527 Kabala(universal object), 1127 kaluza, theodor FE (Germany, 1885-1954) and notions
http://www.wolframscience.com/nks/index/k.html

A
B C D ... J K L M N O ... Z
K
K combinator
K^0 particle
and time reversal violation, 1019
K_33 non-planar graph
Kabala (universal object)
Kaluza, Theodor F. E. (Germany, 1885-1954)
and notions of space, 1028
Kampé de Fériet hypergeometric functions
Kaneko, Kunihiko (Japan, 1956- )
and continuous CAs, 922 in Preface, xiii Kansas grid of towns in, 1187 Kant, Immanuel (Germany, 1724-1804) and complexity in biology, 861 and free will, 1135 and purposes in nature, 1185 Karatsuba, Anatolii A. (Russia, 1937- ) and multiplication, 1142 Kardar-Parisi-Zhang (KPZ) equation Kari, Jarkko J. (Finland/USA, 1964- ) and undecidability in 2D cellular automata, 1138 Kármán, Theodore von (Hungary/Germany/USA, 1881-1963) and vortex streets, 998 Karnaugh maps Kasiski, Friedrich W. (Poland, 1805-1881) and cryptanalysis, 1086 Kauffman, Stuart A. (USA, 1939- ) and Boolean networks, 936 in Preface, xiii Kazakhstan straight railroad in, 1187 KdV equation as exactly soluble, 1133 Kells Book of, 873

26. Stephen Wolfram: A New Kind Of Science -- Index K-o
kaluza, theodor FE (Germany, 18851954) and notions of space, 1028 Kaneko, Kunihiko(Japan, 1956- ) and continuous CAs, 922 in Preface, xiii Kant, Immanuel
http://www.wolframscience.com/nks/index/names/k-o.html?SearchIndex=k-o

27. Science Timeline
Translate this page Kahn, Robert E., 1973. Kalckar, Herman Moritz, 1940. kaluza, theodor, 1921, 1926.Kandel, Eric R., 1965, 1982, 1985. Kant, Immanuel, 1755, 1781, 1786, 1790, 1796.
http://www.sciencetimeline.net/siteindex_i-k.htm
use checkboxes to select items you wish to download
Select Index Letter:
a
b c d ... w-x-y-z
IBM, (International Business Machines), 1935, 1944, 1957 Ibn Ezra, Abraham ben Meir, 1145 Iliopolos, John, 1969 Infeld, L., 1938 Ingelhousz, Jan, 1779 Ingram, Vernon, M. 1956 irrigation, 3500 bce Ising, Ernst 1925, 1931, 1944 Ising, Gustaf, 1925, 1928 ISO, 1996, 1999 Ivanovsky, Dmitri Iosefovich, 1882 Jackson, D. A., 1972 Jackson, J. Hughlings, 1884 Jacob, A. E., 1974 Jacquard, Joseph-Marie, 1801 Jakobson, Roman, 1940 James, William, 1890 Jameson, Dorethea, 1955 Janet, Pierre, 1886, 1919 Jansky, Karl, 1931, 1933, 1939 Janssen, Zacharius and Hans, 1590 Jaynes, Julian, 1976 Jeans, James Hopwood, 1917 Jeffreys, Alec John, 1984

28. Das Virtuelle Bücherregal NRW
6.649.422 kaluza, Stephan 13.094.697 kaluza, theodor Physiker 12.916.867
http://kirke.hbz-nrw.de/dcb/Schlagwoerter/1047.html
Ein freundliches Angebot des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen
Kalltalgemeinschaft
Kallusdistraktion
Kalma, Douwe
Kalman, Rudolf E.
Kalman-Bucy-Filter
Kalman-Filter
Kalmar, Annie
Kalmarer Union
Kalmarsund
KalniÐnÏs, BrÅuno
Kalocsa Kalokagathia Kalopheros, Johannes Laskaris Kalorienbedarf Kalorimeter Kalorimetrie Kalorischer Nystagmus Kaltarbeitsstahl Kaltband Kaltblut Kaltdach Kalte Kernfusion Kalte Neutronenquelle Kaltefleiter, Werner Kaltenbrunner, Ernst Kaltenecker, Gertraud Kaltenengers Kaltenkirchen Kalter Knoten Kalterherberg Kaltes Herz Kaltes Neutron Kaltes Plasma Kaltfront Kaltgasmaschine Kaltgezogener Draht Kaltkammermaschine Kaltkanalverteiler Kaltleiter Kaltlufteinbruch Kaltluftprozess Kaltmassivumformen Kaltnadelarbeit Kaltprofil Kaltriss Kaltstart Kaltstauchen Kaltsterilisation Kaltumformen Kaltverfestigung Kaltwalzen Kaltwalzwerk Kaltwasserfische Kaltwasserheilanstalt Kaluli Kaluraz Kaluszyn Kaluza, Stephan

29. SLIDE 109
5. kaluza, theodor. sitz. Berlin Preuss. Adad. Wiss. 966, 1921. 6. Klein,O., Z. Phys. 37, 895, 1928. 7. Misner, Thorne and Wheeler. Gravitation.
http://www.cheniere.org/books/ferdelance/s109.htm
REFERENCES SLIDE 109. 1. Bass, Robert W., "Self-Sustained Non-Hertzian Longitudinal Wave Oscillations as Rigorous Solutions of Maxwell's
Equations for Electromagnetic Radiation." Proceedings, IEEE Tesla Centennial Symposium, 1984, p. 89 - 90.
2. Des, Jack Y., "Scalar Fields: Their Prediction from Classical Electromagnetism and Interpretation from Quantum
Mechanics." Proceedings, IEEE Tesla Centennial Symposium, 1984, p. 94 - 98.
3. Blade, Richard A., "Modification of Maxwell's Equations in Free Space to Account for Nonzero Photon Mass and
Scalar Electromagnetic Waves." Proceedings, IEEE Tesla Centennial Symposium, 1984, p. 91 - 92.
4. Bearden, T.E., "Tesla's Electromagnetics and its Soviet Weaponization." Proceedings, IEEE Tesla Centennial
Symposium, 1984, p. 119 - 138.
5. Kaluza, Theodor. sitz. Berlin Preuss. Adad. Wiss. 966, 1921.
6. Klein, O., Z. Phys. 37, 895, 1928.

30. The Tom Bearden Website
14, 1984. These patents are assigned to Honeywell. (See also theodor kaluza,Sitz. Berlin Preuss, Adad. Wiss. 966, 1921.). Next Slide. Previous Slide.
http://www.cheniere.org/books/ferdelance/s6.htm
ORDER THE ALL NEW
2ND EDITION

Updated to the year 2002 Stunning new revelations
about the secret scalar
EM wars the media ignores THIS BOOK IS THE
ONLY SOURCE FOR
THIS INFORMATION
The Tom Bearden
Website
Fer de Lance A-FIELD IS REAL SLIDE 6.
A – FIELD CAN INFLUENCE THE MOTION OF ELECTRONS.
MAGNETIC FIELD AND
VECTOR POTENTIAL OF A LONG SOLENOID THE FEYNMAN LECTURES ON PHYSICS, VOLUME II
In classical EM, the vector magnetic potential (the A-field) had been defined as a mathematical convenience by the equation xA = B. [1] But if the potentials are real, then conceivably the A field can be loosed from its enchainment to the x operator. In that case, it becomes a free, new, and independent field of nature with potentially unique characteristics. For example, its defining equation shows that magnetic force field can be made from it, and the rightmost term of the equation E = - Ø -dA/dt [2] shows that its time rate of change makes an electric field.

31. Brane Worlds
Brane Worlds. In 1919, theodor kaluza (18851945) wrote a paper thatwould have a deep and lasting impact on theoretical physics.
http://www.geocities.com/CapeCanaveral/Lab/4059/braneworld.html
Brane Worlds
In 1919, Theodor Kaluza (1885-1945) wrote a paper that would have a deep and lasting impact on theoretical physics. In this paper, Kaluza showed that if you assume that there is one extra dimension of space, and you further assume that everything is independent of the extra fifth dimension, then you can integrate out the extra dimension to recover a four-dimensional theory which consists of Einstein's theory of gravity, plus Maxwell's theory of electromagnetism, together with a scalar field which he incorrectly set equal to a constant. Thus, by starting with Einstein's theory of gravity in five dimensions, you can recover Einstein's theory and Maxwell's theory of electromagnetism in four dimensions simply by assuming that nothing depends on the fifth dimension. Now, most people are under the impression that Kaluza did not think about compactifying the extra dimension. This is not true. In the original paper he does mention the "cylindrical condition" by which he meant the condition that the extra dimension is compactified to a circle. However, he did not say much about the size of the extra dimension. In fact, Kaluza seems almost apologetic about the fact that he had introduced this extra dimension of space, and he often sounds like he wants to think of the extra dimension as a mathematical trick. Luckily, in 1926, Oskar Klein (1894-1977) came along and talked about the size of the circle. He pointed out that it was natural to assume that the circle is very small.

32. Full Alphabetical Index
Translate this page K. Kaestner, Abraham (82*) Kagan, Benjamin (219) Kalmár, László (115*) kaluza,theodor (141*) Kantorovich, Leonid (112*) Kaplansky, Irving (471*) Kármán
http://www.geocities.com/Heartland/Plains/4142/matematici.html
Completo Indice Alfabetico
Cliccare su una lettera sottostante per andare a quel file. A B C D ... XYZ Cliccare sotto per andare agli indici alfabetici separati A B C D ... XYZ Il numero di parole nella biografia e' dato in parentesi. Un * indica che c'e' un ritratto.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (286*)
Abraham
bar Hiyya (240)
Abraham, Max

Abu Kamil
Shuja (59)
Abu'l-Wafa
al'Buzjani (243)
Ackermann
, Wilhelm (196)
Adams, John Couch

Adams, Frank

Adelard
of Bath (89)
Adler
, August (114) Adrain , Robert (79) Aepinus , Franz (124) Agnesi , Maria (196*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (60) Ahmes Aida Yasuaki (114) Aiken , Howard (94) Airy , George (313*) Aitken , Alexander (825*) Ajima , Chokuyen (144) Akhiezer , Naum Il'ich (248*) al'Battani , Abu Allah (194) al'Biruni , Abu Arrayhan (306*) al'Haitam , Abu Ali (269*) al'Kashi , Ghiyath (73) al'Khwarizmi , Abu (123*) Albanese , Giacomo (282) Albert of Saxony Albert, Abraham Adrian (121*) (158*) Alberti , Leone (181*) Alberto Magno, San (109*) Alcuin di York (237*) Aleksandrov , Pave (160*) Alembert , Jean d' (291*) Alexander , James (163) Amringe , Howard van (354*) Amsler , Jacob (82) Anassagora di Clazomenae (169) Anderson , Oskar (67) Andreev , Konstantin (117) Angeli , Stefano degli (234) Anstice , Robert (209) Antemio of Tralles (55) Antifone il Sofista (125) Apollonio di Perga (276) Appell , Paul (1377) Arago , Dominique (345*) Arbogasto , Louis (87) Arbuthnot , John (251*) Archimede di Siracusa (467*) Archita of Tarentum (103) Argand , Jean (81) Aristeo il Vecchio (44) Aristarco di Samo (183) Aristotele Arnauld , Antoine (179)

33. Table Of Contents
Translate this page ARTICLE, kaluza jr., theodor Struktur- und Mächtigkeitsuntersuchungen an gewissenunendlichen Graphen mit einigen Anwendungen auf lineare Punktmengen, 235. .
http://134.76.163.65/agora_docs/37063TABLE_OF_CONTENTS.html
Mathematische Annalen
Bibliographic description for this electronic document

This is volume 122 of Mathematische Annalen

TITLE PAGE I TABLE OF CONTENTS III ARTICLE ...
Browsing list

34. Superstrings
Translate this page theodor kaluza Em 1919, o matemático alemão-polonês theodor Franz Edward kaluza(1885-1945) propôs que o Universo poderia ter mais do que 4 dimensões
http://astro.if.ufrgs.br/univ/string/string.htm
loops ), ou mais recentemente, membranas bidimensionais. Theodor Kaluza a Yoichiro Nambu Holger Nielsen Leonard Susskind, da Universidade de Stanford, Leonard Susskind John Schwarz superstrings loop ), com comprimento de Planck (10 Shing-Tung Yau
The Elegant Universe
Beyond Einstein
Volta: Cosmologia
Volta: user = "kepler"; site = "if.ufrgs.br"; document.write(''); document.write('Kepler de Souza Oliveira Filho' + '');
Modificada em 5 mar 2003

35. The Mathematics Genealogy Project - Index Of KAL
Translate this page Kalus, Norbert, Universität Bielefeld, 1980. Kalus, Christian, 1995. kaluza, theodor,Universität Königsberg, 1907. Kaluzniacki, Roman, Arizona State University, 1969.
http://genealogy.math.ndsu.nodak.edu/html/letter.phtml?letter=KAL

36. NEWTONS ABSOLUTER RAUM
Translate this page 1921 machte der polnische Mathematiker theodor kaluza einen weiteren Vorstoß,indem er eine zusätzliche vierte Raumdimension postulierte und so Einsteins
http://www.fh-furtwangen.de/~webers/membgerm.htm
Kosmische Membran – STEFAN VON WEBER The paper uses Gamovs model of the expanding cosmos, which seems to be well suitable to show pupils how gravitation and curvature of space act together. The proposed cosmic membrane model of gravitation is of type Kaluza-Klein with non-compactified fourth spatial dimension and delivers Newton’s law of gravitation in a direct way. From the point of view of the choosen model the General Relativity is a projection of the 4-dimensional space into the 4-dimensional spacetime. Key words: Kaluza-Klein, membrane, gravitation, relativity G g M M /r und M Abb. 1. Expandierender Kosmos . Die erste Differentiation ergibt z‘=±(r/z), die zweite Differentiation z"=±((1/z)-(r²/z )). Im Punkt r=0 ist z‘=0 und wegen z=±R wird z"=±(1/R). Eingesetzt in Gleichung (1) sehen die Schüler die gewünschte Identität für diesen Sonderfall einer sonst beliebigen Kurve z(r). R steht. Wir gewinnen R , indem wir uns einen Zylinder mit Radius R . Abbildung 4 zeigt diesen Zylinder. Abb. 3. Schmiegekreis R

37. Albert Einstein Archives
146, 14-235 to 14-289, K-Miscellaneous I Kagan, Ben kaluza, theodor Kapitza, PeterKaufmann, Walter Kellner, GW Kemeny, John G. Killian, JW Klein, Martin Kleiner
http://www.albert-einstein.org/userguide_lof.html
A. Scientific material A.1 Scientific manuscripts and notebooks Reel# Folder# Item# Filename Date/s 1-1(a) 1-001 to 1-026 Scientific Manuscripts Published 1914 to 1922
1-1(b) 1-027 to 1-045 Scientific Manuscripts Published 1923 to 1924
1-046 to 1-096 Scientific Manuscripts Published 1925 to 1930
1-097 to 1-132 Scientific Manuscripts Published 1931 to 1936
1-133 to 1-154 Scientific Manuscripts Published 1938 to 1948
1-5(a) 1-155 to 1-184 Scientific Manuscripts Published 1950 to 1953
1-5(b) 1-185 to 1-206 Scientific Manuscripts Published 1954 to 1955 Manuscripts Published-Stafford Lectures
(Meaning of Relativity)
2-002 to 2-003 Manuscripts Published-"Zum kosmologischen Problem"
Appendix I for 2nd Edition, P.U.P. (Meaning of Relativity) 1945 to 1955
2-3(a) 2-004 to 2-011 Manuscripts Published- Notes, Appendix II-Princeton Lectures- (Meaning of Relativity) 1950 to 1953 2-3(b) 2-012 to 2-019 Manuscripts Published- Notes, Appendix II-Princeton Lectures- (Meaning of Relativity) 1950 to 1953 2-4(a) 2-020 to 2-024.1 Manuscripts for Schilpp volume (Albert Einstein: Philosopher-Scientist) 2-4(b) 2-025 to 2-068 Manuscripts for Schilpp volume (Albert Einstein: Philosopher-Scientist) 2-5(a) 2-069 to 2-090 Manuscripts Unpublished ca. 1919 to 1921

38. Ranze-Kaluza Ilona Kaluza Ilona Ranze- Bald Nun Ist Osterzeit
Translate this page Titel Bald nun ist Osterzeit. Autor Ranze-kaluza Ilona kaluza Ilona Ranze-. ZurGeschichte der Sonder Litt theodor Pädagogik und Ku
http://www.easyscifi-box.de/Ranze-Kaluza-Ilona-Kalu-Bald-nun-ist-Osterzeit-37806
Ranze-Kaluza Ilona Kaluza Ilona Ranze- Bald nun ist Osterzeit
Titel: Bald nun ist Osterzeit.
Autor: Ranze-Kaluza Ilona Kaluza Ilona Ranze-
Rubrik: Kinder- und Jugendbücher Geschichten Reime Ostern Kinderbücher Jugendbücher
Beck Herbert, Bol C. Pe Mehr...

Kühn Hermann Erhaltung und Pf...

Kühn Hermann Erhaltung und Pf...

Dörpfeld Friedrich W. Schrift...
...
Home

39. Der Polnische Parteistaat Und Seine Politischen Gegner 1944-1956 Kaluza Andrzej
Translate this page Titel Der polnische Parteistaat und seine politischen Gegner 1944-1956.Autor kaluza Andrzej. Frings theodor Die Anfänge de
http://www.easyscifi-box.de/Kaluza-Andrzej-Der-polnische-Parteistaat-3465027698.
Der polnische Parteistaat und seine politischen Gegner 1944-1956 Kaluza Andrzej
Titel: Der polnische Parteistaat und seine politischen Gegner 1944-1956.
Autor: Kaluza Andrzej
Rubrik: Philosophie Allgemeines Lexika Rechtsgeschichte Polen Politik Zeitgeschichte Recht
Frings Theodor Die Anfänge de...

Ziegler Joseph Antike und mod...

Babinger Franz Das Ende der A...

Kuhn Hugo Zur Typologie mündl...
...
Home

40. ThinkQuest Library Of Entries
In 1919, the obscure Polish mathematician theodor kaluza of the University ofKönigsberg suggested that the universe might somehow have more than three
http://library.thinkquest.org/27930/stringtheory4.htm
Welcome to the ThinkQuest Internet Challenge of Entries
The web site you have requested, CosmoNet , is one of over 4000 student created entries in our Library. Before using our Library, please be sure that you have read and agreed to our To learn more about ThinkQuest. You can browse other ThinkQuest Library Entries To proceed to CosmoNet click here Back to the Previous Page The Site you have Requested ...
CosmoNet
click here to view this site
A ThinkQuest Internet Challenge 1999 Entry
Click image for the Site Languages : Site Desciption
Students
Kate Dighton-Rehoboth Regional High School
MA, United States Daniel James Madison Memorial HS
WI, United States Patrick Yorktown High School
VA, United States Coaches Joseph Dighton-Rehoboth Regional High School
MA, United States

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 2     21-40 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter