Geometry.Net - the online learning center
Home  - Scientists - Kaluza Theodor

e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kaluza Theodor:     more detail
  1. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  2. Theodor Kaluza
  3. Die Tschirnhaustransformation Algebraischer Gleichungen Mit Einer Unbekannten (1907) (German Edition) by Theodor Kaluza, 2010-09-10
  4. Las dimensiones desconocidas: nuestro concepto familiar del universo es que tiene 3 dimensiones, 4 si se añade el tiempo, pero según varias teorías ahora ... percibirlas.: An article from: Contenido by Juan José Morales, 2006-09-01

61. Opernhaus Zuerich, Zuerich (das Opernarchiv)
Translate this page L' Italiana in Algeri Gioachino Rossini, theodor Guschlbauer, Michael Hampe Jens-DanielHerzog, Bernhard Kleber Joanna Kozlowska, Stefania kaluza, Irène Friedli
http://www.opernarchiv.net/Opernhaus_Zuerich/
Opernhaus Zuerich Spielplan
Was suchen Sie?
Datum Datum (TT.MM.JJJJ)
oder Monat (MM.JJJJ)
Suchen Sie nach Namen
(z.B."Placido Domingo"). Opernname Komponist Künstler
Spielzeit 2001 / 2002
Oper

Neuinszenierung Oper Ihre Kritik Die lustigen Weiber von Windsor
Otto Nicolai Heinrich Schiff , Michael Sturminger, Renate Martin, Andreas Donhauser
Alfred Muff, Oliver Widmer, Reinhard Mayr, Christoph Strehl, Kenneth Roberson, Jacob Will, Elizabeth Rae Magnuson, Judith Schmid, Julia Neumann 17.09. geschlossene Vorstellung Theater am Stadtgarten Winterthur
Neuinszenierung Oper Ihre Kritik Otello Giuseppe Verdi Vladimir Fedoseyev , Sven-Eric Bechtolf, Rolf Glittenberg Daniela Dessì, Brigitte Pinter, José Cura, Ruggero Raimondi, Antonello Palombi, Miroslav Christoff, Valeriy Murga, Pavel Daniluk Neuinszenierung Oper Ihre Kritik Chowanschtschina Modest Mussorgski Vladimir Fedoseyev , Alfred Kirchner, Karl Kneidl Yvonne Naef, Ljuba Chuchrova, Margaret Chalker, Matti Salminen, Viktor Lutsiuk, Rudolf Schasching, Nicolai Ghiaurov, Michael Volle, Martin Zysset, Peter Kálmán, Valeriy Murga, Boguslaw Bidzinski, Kenneth Roberson, Yang Neuinszenierung Oper Kritiken Ihre Kritik Siegfried Richard Wagner Franz Welser-Möst , Robert Wilson

62. A Timeline Of Mathematics And Theoretical Physics
1921, theodor kaluza follows Einstein's advice and publishes his highly unorthodoxideas about unifying gravity with electromagnetism by adding an extra
http://superstringtheory.com/history/history3.html
The Official String Theory Web Site History before 1800 / 1900 until today) Max Planck makes his quantum hypothesis that energy is carried by indistinguishable units called quanta , rather than flowing in a pure continuum. This hypothesis leads to a successful derivation of the black body radiation law, now called Planck's Law, although in 1901 the quantum hypothesis as yet had no experimental support. The unit of quantum action is now called Planck's constant. Swiss patent clerk Albert Einstein proposes Planck's quantum hypothesis as the physics underlying the photoelectric effect. Planck wins the Nobel Prize in 1918, and Einstein in 1921, for developing quantum theory, one of the two most important developments in 20th century physics. Einstein publishes his simple, elegant Special Theory of Relativity, making mincemeat of his competition by relying on only two ideas: 1. The laws of physics are the same in all inertial frames, and 2. The speed of light is the same for all inertial observers. Minkowski publishes Raum und Zeit (Space and Time), and establishes the idea of a spacetime continuum

63. A Few Photos
Richard Feynman (circa 1963). Richard Feynman (circa 1965). Murray GellMann(1967). theodor kaluza (circa 1940). Oskar Klein (circa 1950).
http://server.physics.miami.edu/~curtright/4photos.html
T. Curtright (2001) T. Curtright (1996) T. Curtright (1986)
Trip to India 1984:
T. Curtright, R. Field, P. Sikivie, and C. Thorn (1981)

Seattle meeting, 1981

T. Curtright (1980)
Albert Einstein (circa 1935) ... Oskar Klein (circa 1950)

64. The Princeton Mathematics Community In The 1930s (PMC20)
gravitation and electromagnetism. One of those attempts was by theodorkaluza and elaborated by Oskar Klein. The idea was to
http://libweb.princeton.edu/libraries/firestone/rbsc/finding_aids/mathoral/pmc20
The Princeton Mathematics Community in the 1930s
Transcript Number 20 (PMC20)
© The Trustees of Princeton University, 1985
BANESH HOFFMANN
(with ALBERT TUCKER) This is an interview of Banesh Hoffmann by telephone. He is in New York. The interviewers, in Princeton, New Jersey, are Albert Tucker and William Aspray. The date is 13 October 1984. Aspray: Why don't we begin the interview by asking you what the events were that led to your coming to Princeton in 1929? Hoffmann: I was at Oxford University. I was sort of a strange case. I had first of all taught myself Pitman's shorthand. Secondly I had fallen in love with relativity, and I had taught myself relativity because there was no one at Oxford who was giving any lectures on it. I was neglecting my regular course work, and I would have been in quite a sad situation if it hadn't been for the fact that in my last year there was an exchange of professors: G.H. Hardy, who was then at Oxford, went to Princeton for a year, and Oswald Veblen, who was at Princeton, came to Oxford for a year. And it just so happened that Veblen was, interested in what he called projective relativity. Aspray: What was projective relativity?

65. The Princeton Mathematics Community In The 1930s : Index Of Names
K Kac, Mark 315 Kakutani, Shizuo 13-5 kaluza, theodor Franz Eduard 20-1 Kanner,Mort 41-14 Kantorovich, L(eonid) V. 39-10 Kappauf, William E. 41-8 Karush
http://libweb.princeton.edu/libraries/firestone/rbsc/finding_aids/mathoral/pm05.
The Princeton Mathematics Community in the 1930s
©The Trustees of Princeton University, 1985
INDEX OF NAMES
The number of the transcript is given first, followed by the page number for that transcript. Thus 16-23 is a reference to page 23 of transcript 16. (The designation (PMC16) 23 appears at the bottom of that page.) The transcript number is not repeated when, for a given name, there are references to several pages of the same transcript. The transcripts are in numerical order. (The name of the person being interviewed is not indexed for that interview. The occurrences of Albert Tucker's name are indexed only for those interviews in which he did not take part.) A B C D ... Z A
Ackermann, W. Adams, C.R., [mathematician at Brown] Adams, Edwin Plimpton Addison, John Agnew, Ralph P. Ahlfors, Lars V. Albert, Adrian A. Alder, Henry Alexander, J(ames) W(addell) Alexander, Mrs. James, [wife of J.W. Alexander] Alexander, Mrs. John, [mother of J.W. Alexander] Alexandroff, Paul Alfing Alfven, H. Alger, P(hilip) L(angdon) Allen, R.G.D.

66. Gunnar Nordström Symposium - Main Page
Later, after the war, the idea of unification in extra dimensions was again discoveredindependently and popularized by theodor kaluza and Oskar Klein, and
http://www.physics.helsinki.fi/~tfo_www/nordstrom/
[Main Page] Announcements Registration Program Speakers
The Gunnar Nordström Symposium on Theoretical Physics
Helsinki, August 27-30, 2003
This is the first symposium to celebrate Gunnar Nordström and his intellectual heritage. The symposium welcomes physicists from all over the world to discuss exciting new theoretical and experimental developments in topics related to gravity, string theory, novel models of cosmology and physics with higher dimensions. Many of the talks in the symposium will be from invited speakers, but time has also been planned for talks by participants. The participants are encouraged to submit abstracts.
Gunnar Nordström (1881-1923) Gunnar Nordström is without doubt one of the most famous and original Finnish physicists. Nordström played an important role in the development of general theory of relativity, in part in correspondence and in part in competition with Einstein . He developed a scalar theory of gravity which Einstein himself initially considered as a serious rival of his general theory of relativity. Later when it became apparent that Nature had not chosen Nordström's theory, he become one of the earliest supporters of Einstein's theory.
Nordström and Hans Reissner found an electrically charged spherically symmetric solution of Einsteins's equations, which was later understood to describe the spacetime of an electrically charged black hole; the solution is called the Reissner-Nordström metric.

67. MPQ Homepage: Staff
Translate this page H, (+ 49 89) 3 29 05 -, Hänsch, theodor W. Prof. -702, theodor.Haensch. K, (+ 4989) 3 29 05 -, Kaiser, Werner, -132, Werner.Kaiser. kaluza, Malte, -726, Malte.kaluza.
http://www.mpq.mpg.de/mpq-staff/staff-home.html
List of MPQ-Staff / Liste der MPQ-Mitarbeiter A B C D ... List of non-resident MPQ-Staff / Liste der externen MPQ-Mitarbeiter Name Phone / Telefon E-Mail (Firstname.name@mpq.mpg.de) A Alvarez Diez, Cristina Cristina.Alvarez B Baier, Thomas Thomas.Baier Bayerl, Josef Josef.Bayerl Bohm, Brigitte Brigitte.Bohm Bourennane, Mohamed Dr. M.Bourennane Brandl, Georg Georg.Brandl Helmut.Brueckner Buckup, Tiago Tiago.Buckup C Cirac, Ignacio Prof. Ignacio.Cirac Cubitt, Toby Toby.Cubitt D Demeter, Franz Franz.Demeter Dreher, Matthias Matthias.Dreher Dr. Stephan.Duerr E Eckle, Petrissa Petrissa.Eckle Eibl, Manfred Manfred.Eibl Eichenseer, Mario Mario.Eichenseer Eidmann, Klaus Dr. Klaus.Eidmann Ernst, Sebastian Sebastian.Ernst Eusepi, Francesco Francesco.Eusepi F Fendel, Peter Peter.Fendel Figger, Hartmut Dr. Hartmut.Figger Fill, Ernst Dr. Ernst.Fill Fischer, Marc Marc.Fischer Forster, Klaus -141 or
Klaus.Forster
Fray, Sebastian Sebastian.Fray Karin.Froeschl Roswitha.Fuss Dr. Werner.Fuss G Gaertner, Sascha Sascha.Gaertner Dr. Juan J. Garcia Ripoll Gebhardt, Christoph Dr. Christoph.Gebhardt Geissler, Michael Dr.

68. A Conversation With Physicist Brian Greene
times during the 19th century, the first serious proponent of its existence inthe 20th century was an unknown Prussian mathematician named theodor kaluza.
http://tap3x.net/EMBTI/j6greene.html
Next Article
Front Page

Email Author

Comment

A Conversation with Physicist Brian Greene Abstract skip to
section one

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
After his talk, I engaged Brian in a conversation on what appeared to me to be an interesting resemblence between how he seemed to be approaching the structure of reality and what some of us want to say about the structure of consciousness. It is on this conversation that I wish to report in this piece. skip to
section two

In our recent series Pat and I discussed the role that the mandala, as symbol of a profound organizing principle, plays in personality typologies. This required us to articulate our views on the structure of consciousness itself. If the mandala is structured in such a way that its 'outermost' rim must be conceived as identical to its 'innermost' center, we argued, this is because consciousness is similarly structured. If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'. As attention expands its focus to include more and more of the margin or 'fringe' of consciousness, awareness becomes increasingly diffuse and undifferentiated. The same mental state, which occurs at both extremes, is a highly significant state in meditation practice, repeatedly singled out for special consideration by mystics in various traditions.

69. Gevangen In Een Vliegend Tapijt
theodor kaluza en Oskar Klein zagen onafhankelijk van elkaar dat Einsteinsvergelijkingen in vijf dimensies tegelijkertijd de zwaartekracht en het
http://turing.wins.uva.nl/~rhd/tapijt.html
Gevangen in een vliegend tapijt
M-THEORIE BIEDT ZICHT OP EXTRA DIMENSIES MET MENSELIJKE AFMETINGEN
Robbert Dijkgraaf Sinds kort is een aantal natuurkundigen in de ban van het idee dat onze wereld behalve lengte, breedte en hoogte extra dimensies telt die groot genoeg zijn om zichtbaar te worden. Op reis in de hyperruimte. Hoe is dit mogelijk? Waarom zien we deze grote extra dimensies niet met het blote oog? Het mysterie zit verborgen in de eigenschappen van de zwaartekracht, een verschijnsel dat ondanks het werk van Newton en Einstein nog steeds slecht begrepen is, en dat verrassend genoeg ook heel slecht gemeten is. Zo weten we op dit moment niet of de wet van Newton wel geldt op een afstand van een millimeter. Het is niet moeilijk om onszelf te overtuigen dat we in drie dimensies leven. Iedere doe-het-zelver weet dat alles nu eenmaal een lengte, een breedte en een hoogte heeft. Dit simpele gegeven vormt de verklaring van veel natuurverschijnselen, bijvoorbeeld van Newtons befaamde wet die stelt dat de zwaartekracht afneemt met het kwadraat van de afstand tussen twee massa's. Als de afstand twee keer zo groot gemaakt wordt, dan wordt de zwaartekracht viermaal zo zwak. Maar dit is alleen waar in drie dimensies. Als we een vierde dimensie zouden toevoegen zou Newton voorspeld hebben dat de kracht achtmaal zo zwak zou worden. Nu is een vierde dimensie geen onbekend verschijnsel in de moderne fysica. Het was Time magazine's 'man van de eeuw' Albert Einstein die met hulp van de wiskundige Hermann Minkowski inzag dat de tijd als een min of meer gelijkwaardige dimensie mag worden toegevoegd. Hoewel wij in de praktijk niet snel ruimte en tijd door elkaar zullen halen, is dat voor een elementair deeltje dat zich bijna zo snel als het licht voortbeweegt heel anders. Volgens Einsteins algemene relativiteitstheorie van 1915 moet de zwaartekracht dan ook begrepen worden in termen van een vierdimensionale ruimtetijd.

70. Hyperspheres, Hyperspace, And The Fourth Spatial Dimension
Series of essays introducing a fourth spatial dimension into the standard big bang model of the universe.Category Science Anomalies and Alternative Science Cosmology...... dimensional space received the largest impetus in the early 20th century througha brilliant insight of an unknown Prussian mathematician named theodor kaluza.
http://www.bright.net/~mrf/
Hyperspheres, Hyperspace,
and the Fourth Spatial Dimension
Subtitle: A New Look at the Universe as a Closed Cosmic Hypersphere
A Collection of Links and Essays
by
Michael R. Feltz
Updates in March, 2003
Introduction
Ortega y Gasset Our firmest convictions are apt to be the most suspect, they mark our limitations and our bounds... Obstinately to insist on carrying on within the same familiar horizon betrays weakness and a decline of vital energies.
Abraham Lincoln The dogmas of the quiet past are inadequate to the stormy present. The occasion is piled high with difficulty, and we must rise with the occasion. As our case is new, so we must think anew, and act anew. We must disenthrall ourselves.
Is space curved? The three well known Friedmann models provide one way to answer the question about curvature whether space in the universe is curved or not depends on the density (so much matter per unit volume). If the density is equal to a certain critical value - equivalent to one or two hydrogen atoms per cubic meter - there is no curvature the three spatial dimensions we clearly recognize remain orthogonal at all eras this is the Euclidean "flat" model.

71. Week116
It also contains theodor kaluza's 1921 paper On the Unification Problem of Physics and Oskar Klein's 1926 paper Quantum Theory and FiveDimensional
http://math.ucr.edu/home/baez/week116.html
February 7, 1998
This Week's Finds in Mathematical Physics (Week 116)
John Baez
While general relativity and the Standard Model of particle physics are very different in many ways, they have one important thing in common: both are gauge theories. I will not attempt to explain what a gauge theory is here. I just want to recommend the following nice book on the early history of this subject: 1) Lochlainn O'Raifeartaigh, The Dawning of Gauge Theory, Princeton U. Press, Princeton, 1997. This contains the most important early papers on the subject, translated into English, together with detailed and extremely intelligent commentary. It starts with Hermann Weyl's 1918 paper "Gravitation and Electricity", in which he proposed a unification of gravity and electromagnetism. This theory was proven wrong by Einstein in a one-paragraph remark which appears at the end of Weyl's paper - Einstein noticed it would predict atoms of variable size! - but it highlighted the common features of general relativity and Maxwell's equations, which were later generalized to obtain the modern concept of gauge theory. It also contains Theodor Kaluza's 1921 paper "On the Unification Problem of Physics" and Oskar Klein's 1926 paper "Quantum Theory and Five-Dimensional Relativity". These began the trend, currently very popular in string theory, of trying to unify forces by postulating additional dimensions of spacetime. It's interesting how gauge theory has historical roots in this seemingly more exotic notion. The original Kaluza-Klein theory assumed a 5-dimensional spacetime, with the extra dimension curled into a small circle. Starting with 5-dimensional general relativity, and using the U(1) symmetry of the circle, they recovered 4-dimensional general relativity coupled to a U(1) gauge theory - namely, Maxwell's equations. Unfortunately, their theory also predicted an unobserved spin-0 particle, which was especially problematic back in the days before mesons were discovered.

72. Nature Publishing Group
time dimensions that we observe (three space and one time) could be supplementedby extra dimensions was first put forward by theodor kaluza and subsequently
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v404/n6773/full/

73. 11.html
võib olla rohkem kui 3 ruumimõõdet, esitasid juba viiskümmend aastat enne superstringiteooriat,st 1920ndatel, poola füüsik theodor kaluza ja rootsi
http://hot.ee/osakesed/11.html
Stringiteooriad cm) ja sellele vastav energia (10

74. Oxbow Final Research Paper
The idea of extra dimensions first appeared in 1919, introduced byGerman mathematician theodor kaluza. Swedish physicist Oscar
http://128.32.250.15:8080/thelegendary/2002/11/18

The Legendary...

...works of COLE.
Cole Greif-Neill
8-13 May, 2002
Final Project: Science Research Paper.
Superstring Theory

An explanation of Reality. Very rarely will a scientist make a discovery that turns our perception of reality on its head. Over time, those findings become another fact that we just accept when we place our faith in science. Matter is made up of tiny particles called atoms, and our planet is only one in a vast sea of galaxies, fantastically large. These revelations, when first conceived, were widely controversial, many years passing before they became popular belief. Possibly the most pressing issue in modern physics in the unification of the microcosm and the macrocosm - quantum mechanics and astrophysics, respectively. The superstring theory stands as the most cogent theory for unification today. The ideas associated with this theory, though commonplace in cosmology, may seem obscure and even fallacious to the layman. Because of their complex, innovative nature, superstring theory's concepts force us to question our assumptions of even the most ordinary universal laws. In 1968, Italian physicist Gabriele Veneziano, with the help of others, came up with what was called the "string theory." The basic notion: the simplest geometric unit is a tiny, elongated string, rather than a point. Thus, elementary particles, the substance which makes up all matter, rather than points, are strings that vibrate. The resonance, or frequency of this vibration, dictate the mass of the particle, and the force carried. This conversion works because the vibration releases energy, which given the stipulations of special relativity can be converted to mass, and mass directly relates to one of the four forces of nature, gravity. The resonance of the string is determined by the geometry of the extra dimensions in which the vibration occurs (Moring, 252).

75. Namen - K
Translate this page 1913), »Die Verwandlung« (1915), »Der Prozeß« (1925), »Das Schloß« (1926)Kalmus, Hans () - Forscher Biologie (?) kaluza, theodor (1885-1954) - poln.
http://homepages.compuserve.de/abswer/namen/namen_k.htm
Kafka, Franz
Kamerlingh-Onnes, Heike
Kant, Immanuel
Keats, John
Keely, John Worrell
(1829-1896) - dt. Chemiker
Lord Kelvin - s. Thomson, William
Kendrew, John Cowdery
Kepler, Johannes
T. Brahe
Kerouac, Jack
Keynes, John Maynard Kilner, Walter John Aura sichtbar King, Martin Luther Gandhis Vorbild wollte King die Rassenschranken zu Fall bringen, 1964 NP (F) Kipling, Rudyard Kirchhoff, Gustav Robert Kirlian, Semyon u. Valentina Kirlian-Photographie Klemens von Alexandrien (um 150-216) - Klopstock, Friedrich Gottlieb (1724-1803) - dt. Dichter; studierte in Jena u. Leipzig Kneipp, Sebastian Koch, Robert (1843-1910) - Arzt u. Bakteriologe, Koestler, Arthur (1905-1983) - ungar. Schriftsteller Kopernikus, Nikolaus Kollath, Werner Konfuzius Kretschmer, Ernst Krippner, Stanley Krishnamurti, Jiddu (1895/7-1986) - ind. spiritueller Philosoph, wurde von Annie Besant pantheistische Erkenntnis von Welt u. Gott Kropotkin, Graf Pjotr (Peter) Alexejewitsch Kuhn, Thomas S.

76. Text7
The existence of extra curledup dimensions was theoretically demonstrated in 1919by the Polish mathematician theodor kaluza who combined general relativity
http://www.scientific-religious.com/text7.html
VII. The Uncertainty Principle The uncertainty of the position of an electron at a certain time will depend on the forces that bind it to the nucleus and on the influence of other electrons in the atom. These conditions determine a "probability pattern" which represents the electron's tendency to be in various areas of the atom at different times. Mathematically this is represented by the wave probability function, a quantity that is related to the probability of finding the electron in various places at various times. The quantity of the probability is calculated by the "wave equation", the fundamental equation of quantum physics formulated by the Austrian physicist and Nobel laureate Erwin Schrödinger in 1926. (The symbol for the wave probability function is the Greek letter psi , the first symbol of the equation on the home page of this site.) The actualization of a specific property of an electron by the act of observation, i.e., the transformation of a certain feature from potential to real, produces the collapse of the wave probability function. A good example is the classical case of a tree that falls in a forest. Will it make a sound if no one is there to hear it? The answer is that, when it hits the ground, it will generate sound waves but not sound 'per se'. The waves will become sound (by definition) only when they are 'heard' and for this to occur a hearing device - an ear - is necessary. It is the ear that turns sound waves into sound as it is the eye that turns light waves into vision. Mathematically speaking, the wave probability function (psi) collapses only when the latter occurs.

77. New Scientist Planet Science: Five And Counting...
The idea of a fifth dimension is not new. It arose out of work by two Germanmathematicians, theodor kaluza and Oskar Klein, in the 1920s.
http://pvanhove.home.cern.ch/pvanhove/PopularScience/NewScientist/fifth.html
HOME CONTENTS JOBS [Archive: 24 October 1998] Five and counting...
Digital Illustration: Charlie Ward Against all the odds, we may soon
catch a glimpse of the fifth dimension.
If it appears, it will transform our view of
how forces in the early Universe were fashioned,
says Marcus Chown
 GeV  Length  Significance  Electroweak  electromag-weak  GUT  color-electroweak  String  GUT-gravity  Planck  grav=other forces IT'S DECEMBER 2005 and the Large Hadron Collider at CERN near Geneva has just completed its first successful run. In a dimly lit control room deep underground, a computer display comes alive with the colour-coded tracks of two particle events plucked from the quadrillions of others seen by one of the LHC's cathedral-sized detectors. The effect on the assembled physicists, who have worked themselves to the brink of exhaustion over the past weeks, is dramatic. They whoop and cheer and hug each other like long-lost friends. For what they see on the screen is the unmistakable signature of the fifth dimension. If you think this scenario is science fiction, think again. A growing band of physicists believe that the four dimensions of our everyday Universethree of space and one of timeare just the tip of the iceberg. What's more, they say, we may soon be able to see the effects of the fifth dimension. It might even show its hand in the next round of accelerator experimentsa prospect that is enough to make any particle physicist's mouth water. And not only for its own sake. It would be a giant step on the long march to a Theory of Everything, the long-sought theory that will unify the four fundamental forces of physics. If we discovered a fifth dimension, it would be the most important discovery since quantum theory, says Gordon Kane, a theorist from the University of Michigan.

78. Allround-Computer-Kurs
Translate this page Allround-Computer-Kurs. (http//kaluza.physik.uni-konstanz.de/a) Martin Hofmann,Der Pannenhelfer, VNR Verlag für die deutsche Wirtschaft, theodor-Heuss Str.
http://kaluza.physik.uni-konstanz.de/a/
Allround-Computer-Kurs
(http://kaluza.physik.uni-konstanz.de/a) Vortragender: Dieter Ebner
(http://physik.uni-konstanz.de/LT/DieterEbner.html)
e-mail: Dieter.Ebner@uni-konstanz.de
Sprechstunden der Betreuer: Freitags 13:30-16 Uhr im P604. Inhalt:
Das Grafik-Programm Corel Draw

Multimedia

LINUX und UNIX

Die Programmiersprache C++
...
Mathematica und Maple
Weitere Themen (in Vorbereitung) Verschiedenes: Taschenrechner
Aus der Geschichte der Computer und Mathematische Logik
Literatur zu allen Themen
Evaluation des Kurses
Der Kurs findet statt im Wintersemester 2000/2001 jeweils donnerstags von didaktischen Konzept dieses Allround Computer-Kurses.
Literatur zu allen Themen und zu Windows
Brauner, Raible-Besten, Weigert: PC-Anwender-Lexikon, Oldenbourg-Verlag, ISBN 3-486-24710-7, Signatur: kid 5 c/b71
Evaluation des Kurses
(z.B. per e-mail: Dieter.Ebner@uni-konstanz.de oder per Hauspost: Dieter Ebner, Physik, Fach M678, Uni Konstanz, 78457 Konstanz) eines Fragebogens , um Ihre Interessensgebiete zu eruieren. Ergebnisse des Fragebogens im Wintersemester

79. Mitglieder
Translate this page France kaluza, Dr. Zénon (2002), zenon.kaluza@wanadoo.fr. Great Britain Köhler,Prof. Dr. theodor W. (2002), theodor.koehler@sbg.ac.at. Polska
http://www.st-georgen.uni-frankfurt.de/igtm/Mitglieder.htm
Internationale Gesellschaft
(IGTM) Mitglieder
Argentina: rpereto@hotmail.com
Australia: Mews, Prof. Dr. Constant (2002), Constant.Mews@arts.monash.edu.au
Belgique: Obiwulu, Aloysius (2002), a.obiwulu@wanadoo.be
Brasil: Pierpauli@aol.com
Chile: Rehbein, Prof. Dr. Antonio (2002), arehbein@puc.cl Meis, Prof. Dr. Anneliese ameis@puc.cl
Deutschland: - korporative Mitglieder Albertus-Magnus-Institut Bonn (2002), ami@ami.bn.shuttle.de
http://www.bn.shuttle.de/ami
Bibliothek des Priesterseminars Trier (2002), embach@uni-trier.de
http://www.ps-trier.de
hsv-institut@gmx.de
http://www.st-georgen.uni-frankfurt.de/hugo
Anzulewicz, Dr. Henryk (2002), henryk.anz@gmx.de Arnold, Dr. Johannes (2002), Johannes.Arnold@ruhr-uni-bochum.de Bauer, Dieter R. (2003), Bauer@akademie-rs.de http://www.akademie-rs.de Bendel-Maidl, PD Dr. Lydia (2002), bendel.maidl@freenet.de Berger, Dr. David (2002), schriftleitung@doctor-angelicus.de http://www.doctor-angelicus.de Berndt, Prof. Dr. Rainer (2002), R_Berndt@st-georgen.uni-frankfurt.de http://www.st-georgen.uni-frankfurt.de/hugo/rainer_berndt.html Blasberg, Ralf (2002), RWBlasberg@aol.com

80. Naturwissenschaftliche Berühmtheiten 1870 Bis 1899
Translate this page Bohrsches Atommodell 1922 Nobelpreis. theodor Franz Eduard kaluza (09.11.1885-19.01.1945).Hermann Weyl (09.11.1885-08.12.1955). Adriaan Fokker (1887-1972).
http://cip-lx9.physik.uni-siegen.de/~klose/beruehmt/beruehmt_chrono_1870_1899.ht
Jean Baptiste Perrin
Nobelpreis
Gino Fano
Sir Ernest Rutherford (Lord of Nelson)
Rutherford-Streuung
Rutherfordsches Atommodell Ernst Friedrich Ferdinand Zermelo
Paul Langevin
Willem de Sitter
Bertrand Arthur William Russel
Russelsche Antinomie Tullio Levi-Civita
Levi-Civita-Tensor Karl Schwarzschild
Schwarzschildradius Guglielmo Marchese Marconi Drahtlose Telegraphie Nobelpreis Johannes Stark Stark-Effekt Nobelpreis Theodore Lyman (geb. 1974) Lyman-Serie Issai Schur Schur's Lemma Lebesgue-Integral Sir James Hopwood Jeans Rayleigh-Jeanssches Strahlungsgesetz Marcel Grossmann Lise Meitner Kernspaltung Otto Hahn Kernspaltung Albert Einstein Photoeffekt Einstein-Modell Nobelpreis Max Theodor Felix von Laue Nobelpreis Paul Ehrenfest Ehrenfest-Theorem Hermann Staudinger Erwin Rudolf Madelung Madelungskonstante Clinton Joseph Davisson Nobelpreis Hans Wilhelm Geiger Waclaw Sierpinski Sierpinski-Dreieck Amalie Emmy Noether Noether-Theorem James Franck Franck-Hertz-Versuch Nobelpreis Max Born Bornsche Reihe Nobelpreis Sir Arthur Stanley Eddington Lichtablenkung an Sonne Peter Joseph Wilhelm Debye Debye-Modell Niels Hendrik David Bohr Bohrsches Atommodell Nobelpreis Theodor Franz Eduard Kaluza Hermann Weyl Adriaan Fokker Fokker-Planck-Gleichung Gustav Ludwig Hertz Nobelpreis Nobelpreis Henry Moseley Sydney Chapman Chapman-Kolmogoroff-Gleichung Alexander Alexandrowitsch Friedmann Otto Stern 1924: Stern-Gerlach-Experiment Nobelpreis Sir Chandrasekhara Venkata Raman Raman-Streuung Nobelpreis Walther Gerlach 1924: Stern-Gerlach-Experiment Edwin Powell Hubble Hubble-Teleskop Sir William Lawrence Bragg

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 94    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter