Geometry.Net - the online learning center
Home  - Scientists - Kutta Martin

e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 90    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Kutta Martin:     more detail

1. Kutta
Martin Wilhelm Kutta (1867 1944). Mathematiker, insbesondere numerische Mathematik.
http://www.kk.s.bw.schule.de/mathge/kutta.htm
Martin Wilhelm Kutta (1867 - 1944)
Numerische und angewandte Mathematik (Theorie des Auftriebs, Photogrammetrie, numerische Integration) geboren in Pitschen (Oberschlesien) " Als Hochschullehrer war er wegen der Klarheit und Anschaulichkeit seiner Vorlesungen sehr geschätzt; man rühmt ihm nach, daß er auch Ingenieuren , die die Mathematik nich liebten, diese interessant zu machen verstand." NDB 7, S. 349f
  • Elliptische und andere Integrale bei Wallis. Bib. Math. (3) 2 (1901), S. 230-234
Quellen:
  • Pogg. 4, S. 821, Pogg. 5, S. 695, Pogg. 6, S. 1437, Pogg 7a, S. 978 Werner Schulz: Kutta. In Neue Deutsche Biographie (NDB), Bd. 7, S. 348-350
[Stuttgarter Mathematiker] [Homepage KK] Bertram Maurer 10.03.1998

2. Kutta
Martin Wilhelm Kutta. Born 3 Nov 1867 in Pitschen Martin Kutta studiedat Breslau from 1885 to 1890. Then he went to Munich where
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Kutta.html
Martin Wilhelm Kutta
Born: 3 Nov 1867 in Pitschen, Upper Silesia (now Byczyna, Poland)
Died:
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Martin Kutta studied at Breslau from 1885 to 1890. Then he went to Munich where he studied from 1891 to 1894, later becoming an assistant to von Dyck at Munich. During this period he spent the year 1898-99 in England at the University of Cambridge. Kutta held posts at Munich, Jena and Aachen. He became professor at Stuttgart in 1911 and remained there until he retired in 1935. He is best known for the Runge -Kutta method (1901) for solving ordinary differential equations and for the Zhukovsky - Kutta aerofoil. Runge presented Kutta's methods.
Article by: J J O'Connor and E F Robertson Click on this link to see a list of the Glossary entries for this page A Reference (One book/article) Mathematicians born in the same country Other references in MacTutor Chronology: 1900 to 1910 Other Web sites Munich, Germany

3. Famous People
Wolfgang Kilby Jack Kirchhoff Gustav Klein Felix Klitzing Klaus Koshiba MasatoshiKroemer Herbert Kronecker Leopold Kusch Polykarp.html kutta martin, L'Hospital
http://www.aldebaran.cz/famous/list_ijkl.html
I, J K L Jacobi Carl
Jansky Karl

Jarník Vojtìch

Jeans James
... Odkazy

4. Runge & Kutta
Translate this page Il a laissé son nom dans la célèbre méthode de Runge-Kutta (kutta martin Wilhelm,1867-1944, allemand, également physicien) généralisant une méthode
http://www.sciences-en-ligne.com/momo/chronomath/chrono2/Runge.html
RUNGE Karl David
allemand, 1856-1927
Euler Le principe est de Pour en savoir plus :
  • , par R. Theodor
    CNAM, cours A. Ed. Masson, Paris 1989 Traitement d'algorithmes par ordinateur , Tome II, par Louis Leon
    E.N.S.T.A. Ed. CEPADUES, Toulouse, 1983
Picard Stieltjes

5. Kutta
kutta, martin Wilhelm. (18671944). Nemecký matematik (pracoval vMnichove), který se proslavil úcinným numerickým schématem
http://www.aldebaran.cz/famous/people/Kutta_Martin.html
Kutta, Martin Wilhelm
Nìmecký matematik (pracoval v Mnichovì), který se proslavil úèinným numerickým schématem na øešení diferenciálních rovnic Dnes se tato metoda øešení nazývá Runge-Kuttova metoda a byla objevena v roce 1901. Astrofyzika Galerie Sondy Úkazy ... Odkazy

6. Wilhelm Martin Kutta 1867-1944
Translate this page Wilhelm martin kutta 1867-1944. kutta wird 1867 in Pitschen, Oberschlesien,nahe der ehemaligen Grenze zu Russisch-Polen geboren.
http://triton.mathematik.tu-muenchen.de/~kaplan/fakul/node21.html
Next: Josef Lense 1890-1985
Up: Lebensbilder
Previous: Sebastian Finsterwalder 1862-1951
Wilhelm Martin Kutta 1867-1944
... Angeregt durch den Aufsatz von Herrn Runge ... Die Runge-Kutta Formeln sollten Epoche machen: Kein rechnender Naturwissenschaftler oder Ingenieur auf der Welt, der sie nicht wenigstens dem Namen nach kennt.
Aeroplans Der Gepatschferner i. J. 1896 Das war ein Demokrat ! Aber es wird immer einsamer um Kutta. Pfeiffer: R. Bulirsch, M. Breitner
Next: Josef Lense 1890-1985
Up: Lebensbilder
Previous: Sebastian Finsterwalder 1862-1951
Michael Kaplan
Thu Dec 7 21:19:21 GMT+0100 1995

7. Kutta
Biography of martin kutta (18671944) martin Wilhelm kutta. Born 3 Nov 1867 in Pitschen, Upper Silesia (now Byczyna, Poland)
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Kutta.html
Martin Wilhelm Kutta
Born: 3 Nov 1867 in Pitschen, Upper Silesia (now Byczyna, Poland)
Died:
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Martin Kutta studied at Breslau from 1885 to 1890. Then he went to Munich where he studied from 1891 to 1894, later becoming an assistant to von Dyck at Munich. During this period he spent the year 1898-99 in England at the University of Cambridge. Kutta held posts at Munich, Jena and Aachen. He became professor at Stuttgart in 1911 and remained there until he retired in 1935. He is best known for the Runge -Kutta method (1901) for solving ordinary differential equations and for the Zhukovsky - Kutta aerofoil. Runge presented Kutta's methods.
Article by: J J O'Connor and E F Robertson Click on this link to see a list of the Glossary entries for this page A Reference (One book/article) Mathematicians born in the same country Other references in MacTutor Chronology: 1900 to 1910 Other Web sites Munich, Germany

8. References For Kutta
References for martin kutta. Articles W Schulz, martin Wilhelmkutta, Neue Deutsche Biographie 13 (Berlin, 1952 ), 348-350.
http://www-gap.dcs.st-and.ac.uk/~history/References/Kutta.html
References for Martin Kutta
Articles:
  • W Schulz, Martin Wilhelm Kutta, Neue Deutsche Biographie (Berlin, 1952- ), 348-350. Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR December 1996 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Kutta.html
  • 9. 7 FSM Intrm. 536-550
    JIM kutta, HALVERSON NIMEISA, RESAUO. martin, ERADIO WILLIAM, FRANCIS RUBEN,
    http://www.fsmlaw.org/fsm/decisions/vol7/7fsm536_550.htm
    THE SUPREME COURT OF THE FEDERATED STATES OF MICRONESIA TRIAL DIVISION Cite as Davis v. Kutta 7 FSM Intrm. 536 (Chk. 1996)
    [7 FSM Intrm. 536]
    MENRY DAVIS, Plaintiff,
    vs.
    JIM KUTTA, HALVERSON NIMEISA, RESAUO MARTIN, ERADIO WILLIAM, FRANCIS RUBEN, JOHNSON SILANDER and the STATE OF CHUUK, Defendants.
    CIVIL ACTION NO. 1992-1039
    FINDINGS OF FACT AND CONCLUSIONS OF LAW

    Martin Yinug Associate Justice
    Trial: April 6-8, 1995 Decided: August 6, 1996
    APPEARANCES: For the Plaintiff: R. Barrie Michelsen, Esq. John Hollinrake, Esq. Law Offices of R. Barrie Michelsen P.O. Box 1450 Kolonia, Pohnpei FM 96941
    [7 FSM Intrm. 537] For the Defendants: Wesley Simina, Esq. Attorney General Office of the Chuuk Attorney General P.O. Box 189 Weno, Chuuk FM 96942 HEADNOTES Civil Procedure Pleadings Issues not specifically raised in pleading may be tried by parties' implied consent. Davis v. Kutta, 7 FSM Intrm. 536, 543 (Chk. 1996). Torts Battery A person is liable to another for battery if he acts intending to cause harmful contact with a third person or an imminent apprehension of such contact, and a harmful contact indirectly results. Davis v. Kutta, 7 FSM Intrm. 536, 544 (Chk. 1996).

    10. Josef Lense 1890-1985
    Translate this page next up previous contents Next Robert Sauer 1898-1970 Up LebensbilderPrevious Wilhelm martin kutta 1867-1944. Josef Lense 1890-1985.
    http://triton.mathematik.tu-muenchen.de/~kaplan/fakul/node22.html
    Next: Robert Sauer 1898-1970
    Up: Lebensbilder
    Previous: Wilhelm Martin Kutta 1867-1944
    Josef Lense 1890-1985
    Am Nachmittag Vorlesung Mathematik und Musik; (1948) festgehalten. Reihenentwicklungen in der Mathematischen Physik Kugelfunktionen (1950) und Analytische projektive Geometrie Peter Vachenauer
    Next: Robert Sauer 1898-1970
    Up: Lebensbilder
    Previous: Wilhelm Martin Kutta 1867-1944
    Michael Kaplan
    Thu Dec 7 21:19:21 GMT+0100 1995

    11. References For Kutta
    References for the biography of martin kutta References for martin kutta. Articles W Schulz, martin Wilhelm kutta, Neue Deutsche Biographie 13 (Berlin, 1952
    http://www-groups.dcs.st-and.ac.uk/~history/References/Kutta.html
    References for Martin Kutta
    Articles:
  • W Schulz, Martin Wilhelm Kutta, Neue Deutsche Biographie (Berlin, 1952- ), 348-350. Main index Birthplace Maps Biographies Index
    History Topics
    ... Anniversaries for the year
    JOC/EFR December 1996 School of Mathematics and Statistics
    University of St Andrews, Scotland
    The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/References/Kutta.html
  • 12. Kutta Portrait
    Portrait of martin kutta martin kutta. JOC/EFR August 2001
    http://www-history.mcs.st-and.ac.uk/PictDisplay/Kutta.html
    Martin Kutta
    JOC/EFR August 2001 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Kutta.html

    13. A Breif Discription Of Martin William Kutta
    ~martin William kutta~. 3 Nov, 1867 25 Dec, 1944. To visit the site that thispicture was taken from, and to learn more about kutta, click on his picture.
    http://www.culver.org/academics/mathematics/Faculty/haynest/nctm/algebra1x/schri
    ~Martin William Kutta~ 3 Nov, 1867 - 25 Dec, 1944 To visit the site that this picture was taken from, and to learn more about Kutta, click on his picture
    Kutta was alive through World War I and most of World War II in Germany where he died in 1944. He worked in several prestigious universities such as Munich (where he served as an assistant to the famous Walther von Dyck ) and with several other famous mathematicians, such as Carl Runge , with whom he developed the Runge-Kutta method of differential equations. He also is credited with developing a type of aerofoil with the technical mathematician Nikoli Zhukovsky
    click here to see where this information was taken from He contributed to the field of solving differential equations Differential Equations are mathematical equalities that relate the constantly changing dependence of one variable to another. That is, they show a relationship of functions in a problem that can have altering variables or constants. A common type of differential equation is: d y dt ky Where: y is the function (what the variable does or represents) and t is the variable itself. K (the part of the answer that doesn’t relate to the other side of the equation) is usually the constant, or the number that stays the same throughout the problem.

    14. [Fwd: Re: [ODE] Euler Vs. Runge-Kutta And Adaptive Step Sizes]
    martin Original Message - From martin C. martin martin@metahuman.org Subject Re ODE Euler vs. Runge-kutta and adaptive step sizes To
    http://q12.org/pipermail/ode/2002-May/001195.html
    [Fwd: Re: [ODE] Euler vs. Runge-Kutta and adaptive step sizes]
    Martin C. Martin martin at metahuman.org
    Wed May 1 21:17:02 2002 Oops, sorry for sending these out of order. - Martin Original Message From: "Martin C. Martin" <martin@metahuman.org> Subject: Re: [ODE] Euler vs. Runge-Kutta and adaptive step sizes To: Russ Smith <russ@q12.org> Hey Russ, I'm interested in higher order integrators mostly in the hope that it will allow larger time steps, at least when the set of constraints isn't changing. Perhaps that's misguided on my part? > errrm ... not sure ... what part of 'numerical recipes' describes this?

    15. [Fwd: Re: [ODE] Euler Vs. Runge-Kutta And Adaptive Step Sizes]
    Rungekutta and adaptive step sizes To martin C. martin martin@metahuman.org Russ, I take it you use Euler integration rather than, say, fourth order
    http://q12.org/pipermail/ode/2002-May/001192.html
    [Fwd: Re: [ODE] Euler vs. Runge-Kutta and adaptive step sizes]
    Martin C. Martin martin at metahuman.org
    Wed May 1 20:59:02 2002 Russ sent this just to me, rather than to the list, by mistake, so I'm forwarding it to the list. - Martin Original Message From: Russ Smith <russ@q12.org> Subject: Re: [ODE] Euler vs. Runge-Kutta and adaptive step sizes To: "Martin C. Martin" <martin@metahuman.org> > Russ, I take it you use Euler integration rather than, say, fourth order Runge-Kutta? If so, why? Would a fourth order Runge-Kutta be a lot more work? Also, I'm thinking of implementing my own adaptive step size algorithm, step doubling as described in Numerical Recipes. Basically, I take a step of a large step size, record the positions/velocities of everything, then "rewinding" everything to before the step and taking two steps of half the size. How hard would

    16. Arbeitsmaterialien Martin Arnold
    kutta-Verfahren HEDOP5(Index-2-Formulierung mit Last modified Oct 2, 2002 by martin.arnold@dlr.de .
    http://www.ae.op.dlr.de/~arnold/work-frame.html
    Martin Arnold
    Arbeitsmaterialien zu Vorlesungen (in German only)
    Archiv
    Archiv
    Sommersemester 2002
    Vorlesung
    ,,Differentiell-algebraische Systeme: Theorie, Numerik, technische Anwendungen'' Zentrum Mathematik der
    Wintersemester 2001/02
    Vorlesung
    ,,Numerische Numerische Methoden in der Fahrzeug-Systemdynamik'' Zentrum Mathematik der

    17. Publications Martin Arnold
    Please send me an email (martin.arnold@dlr.de) if you would like Arnold, M. HalfexplicitRunge-kutta methods with explicit stages for differential-algebraic
    http://www.ae.op.dlr.de/~arnold/publ-frame.html
    Martin Arnold
    Publications
    Papers Technical reports, Preprints Habilitationsschrift (in German only)
    Selected papers are available online as full text or abstract (in postscript or format). Please send me an email ( martin.arnold@dlr.de ) if you would like to get a paper copy of the full text version.
    Papers that have been made available on this server within the last 12 months (approximately) or that have been revised in that period are marked by
    Selected actual papers
    Complete list up to 1997
    • Arnold, M.: Numerically stable modular time integration of multiphysical systems. - In: Bathe, K.J. ed.: Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics (Cambridge, MA, June 12-15, 2001). - Elsevier, Amsterdam, pp. 1062-1064, 2001. ( abstract
    • abstract
    • dynit99.ps , 2.0 MByte).
    • Arnold, M.: Constraint partitioning in dynamic iteration methods. - Z. Angew. Math. Mech., Supplement 3 to vol. 81:S735-S738, 2001 ( zamm00.ps

    18. Martin Wilhelm Kutta
    Translate this page martin Wilhelm kutta (1867 - 1944) Matemático e engenheiro hidráulicoalemão nascido em Pitschen, Alta Silésia, hoje Byczyna
    http://www.sobiografias.hpg.ig.com.br/WilheKut.html
    Martin Wilhelm Kutta Otto Lilienthal (1848-1896) , desenvolveu experimentos paralelos a Nicolai Joukowsky (1847-1921) von Dyck Nova B U S C A :

    19. So Biografias: Britanicos Em K
    Paulus Krupp, Alfred Krupp, Bertha Kuhn, Richard Kühne, Wilhelm Friedrich Kummer,Ernst Eduard Kurt, Alder Kusch, Polykarp kutta, martin Wilhelm Kwarizmi, ibn
    http://www.sobiografias.hpg.ig.com.br/LetraKB.html

    Kaiser, Henry John

    Kalm, Peter
    ou Per
    Kaiser, Henry John

    Kalm, Peter
    ou Per ...
    Kwarizmi, ibn-Musa

    20. Maths - Calculus - Martin Baker
    Rungekutta Method. Taylor series It would also be useful to have the differentialand integral for all the standard functions. Copyright (C) martin Baker 2003.
    http://www.martinb.com/maths/differential/
    Maths - Calculus
    General Principles
    Differential equations are important for simulating the physical world, examples are: change of position with time, and also the change of pressure with distance through an object. The first type tends to be solved using initial value information, the second type using boundary values. We will cover initial value solutions first, then boundary solutions, in both cases we will cover analytical and numeric methods.
    Time varying position - initial value solutions
    Equation depends on constraints and positions of forces, for example, if an object is constrained to move in the y-plane and if it is under a constant force then:
    Examples from physics
    Example 1 - acceleration under gravity
    A mass accelerates under the influence of gravity. Due to Newtons second law (Force = Mass * Acceleration), the equations of motion tend to be expressed in terms of the second differential with respect to time, in this case this is a constant defined by the gravity constant. So solving this example is just a case of integrating twice. We need to know the initial value conditions, for instance, the velocity and position at time=0.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 90    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter