Geometry.Net - the online learning center
Home  - Scientists - Poncelet Jean-victor

e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Poncelet Jean-victor:     more books (25)
  1. Applications D'analyse Et De Géométrie Qui Ont Servi ... De ... Fondement Au Traité Des Propriétés Projectives Des Figures, Avec Additions Par Mm. Mannheim Et Montard (French Edition) by Jean Victor Poncelet, 2010-02-22
  2. Rapport Sur Les Machines Et Outils Employes Dans Les Manufactures, Part 1: Relative Aux Matieres Non Textiles (1857) (French Edition) by Jean Victor Poncelet, 2010-09-10
  3. Cours de mécanique appliquée aux machines (French Edition) by Jean Victor Poncelet, 2001-03-01
  4. Memoire Sur Les Roues Hydrauliques A Aubes Courbes, Mues Par-Dessous (1827) (French Edition) by Jean Victor Poncelet, 2010-09-10
  5. Mécanique Industrielle, Volume 1 (French Edition) by Jean Victor Poncelet, 2010-06-03
  6. Introduction À La Mécanique Industrielle Physique Et Expérimentale (French Edition) by Jean Victor Poncelet, X Kretz, 2010-02-12
  7. Societe Des Lettres, Sciences Et Arts De Metz: 1824 To 1826 (1824) (French Edition) by Jean Victor Poncelet, M. Munier, 2010-09-10
  8. Applications D'Analyse Et De Geometrie V2 (1864) (French Edition) by Jean Victor Poncelet, 2010-03-19
  9. Introduction À La Mécanique Industrielle Physique Ou Expérimentale (French Edition) by Jean Victor Poncelet, 2010-02-22
  10. Applications D'analyse Et De Géométrie Qui Ont Servi ... De ... Fondement Au Traité Des Propriétés Projectives Des Figures, Avec Additions Par Mm. Mannheim Et Montard (French Edition) by Jean Victor Poncelet, 2010-02-05
  11. Rapport Sur Les Machines Et Outils Employés Dans Les Manufactures, Volume 2 (French Edition) by Jean-Victor Poncelet, 2010-02-23
  12. Rapport Sur Les Machines Et Outils Employes Dans Les Manufactures, Part 1: Relative Aux Matieres Non Textiles (1857) (French Edition) by Jean Victor Poncelet, 2010-09-10
  13. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain (French Edition) by Jean Victor Poncelet, 2010-06-20
  14. Applications D'Analyse Et De Geometrie V2 (1864) (French Edition) by Jean Victor Poncelet, 2010-09-10

61. Technical Units Named After People
planck, , Max KEL Planck, action, J·s. poise, P, Jean-Louis-Marie Poiseuille,dynamic viscosity, 0.1 Pa·s. poncelet, -, Jean Victor poncelet, power,-.
http://www.geocities.com/maineiac_bibliophage/people.html
unit symbol person quantity measured value ampere A André-Marie Ampère electric current C/s angstrom Anders Jonas Ångström length 10e-10 m baud Jean-Maurice-Émile Baudot signal transmission speed 1 unit per second becquerel Bq Antoine-Henri Becquerel disintigration rate one disintigration per second bel B Alexander Graham Bell power comparison dimensionless biot Bi Jean Baptiste Biot electric current 10 A blondel André-Eugène Blondel luminence p cd·m Bohr magneton Niels Henrik David Bohr magnetic moment eh/4 p m e brewster B Sir David Brewster stress-optical coefficient m /N Bubnoff unit Bubnoff speed 10e-6 m/year clausius Cl Rudolf Julius Emanuel Clausius entropy cal/K coulomb C Charles-Augustin de Coulomb electric charge A·s curie Ci Marie and Pierre Curie disintigrtion rate 3.7e10 Bq dalton John Dalton mass 1/16 the mass of an oxygen-16 atom darwin Charles Darwin evolutionary change debey D Peter Joseph Wilhelm Debey electric dipole moment (10e-19/c) C·m einstein E Albert Einstein quanity of light one mole of photons Eotvos unit E Roland, Baron von Eötvös gradient of acceleration 10e-9 s erlang r Agner Krarup Erlang communications traffic intensity farad F Michael Faraday electric capacitance A·s/V faraday Fd Michael Faraday electric charge the charge of a mole of electrons fermi fm Enrico Fermi length 10e-15 m franklin Fr Benjamin Franklin electric charge 3.33564e-10 C

62. WaterWheel Factory - Poncelet Waterwheel
It is important to understand the environment in which Jean VictorPoncelet developed his unique design. In the 1820s Britain and
http://www.waterwheelfactory.com/poncelet.htm
Your Waterwheel Solution The Poncelet design The Poncelet design, pictured above, offered a curved bucket with its lip angled tangentially to eliminate the impact to near zero. Planned in 1824, this designs flourishing for over 10 years. Now forgotten for more than a century, the ingenious design, more than any other, pointed the way to the great changes in "water engines" that were to occur in the late 1800s. The Poncelet was a graceful, efficient, undershot wheel, unlike any other before it. Now, the Poncelet wheel usually receives but slight mention in modern engineering textbooks, often only a short paragraph with few details. It deserves much more, for it was the first wheel designed to meet the advanced principles of hydraulic physics, thus setting a precedent for all later developers of waterpower. It is important to understand the environment in which Jean Victor Poncelet developed his unique design. In the 1820s Britain and Europe were in the midst of the great industrial revolution. The steam engine was a generation away from taking the leading role in powering industry in France. There was scarcely a good hydro site in England or Europe that had not been harnessed. Many of the streams had mills so crowded together that one could travel for long distances without getting out of sight of a water wheel. Every inch of head was precious, and every gallon of flow was treasured. The government of France and others offered large prizes and great honors to designers of more efficient water wheels. Many of the best minds of the day were engaged in seeking additional energy for their burgeoning industry.

63. Sluitingsstelling Van Poncelet
cirkel doorloopt. (Sluitingsstelling van poncelet, naar Jean Victorponcelet, 17881867, Frankrijk, gepubliceerd in 1822). . figuur
http://www.pandd.demon.nl/sluitstel.htm
Sluitingsstelling van Poncelet Overzicht Om- en incirkel Meetkunde 0. Overzicht
  • Probleemstelling Twee hulpstellingen en de stelling van Casey en Hart Bewijs van de sluitingsstelling Projectief bewijs van de sluitingsstelling Referenties
  • Zie ook de pagina " Om- en incirkel " voor een bewijs van de (beperkte) Sluitingsstelling via inversie 1. Probleemstelling Stelling 1
    Zij P een punt van cirkel en raken de koorden door P aan twee met die cirkel coaxiale cirkels, dan raken de sluitlijnen van de koorden aan een derde coaxiale cirkel, indien P de cirkel doorloopt.
    Sluitingsstelling van Poncelet , naar Jean Victor Poncelet , 1788-1867, Frankrijk, gepubliceerd in 1822) figuur 1
    Coaxiale cirkels coaxiaalcirkels ) zijn cirkels met dezelfde machtlijn. Men spreekt ook wel van een cirkelbundel
    Zie hiervoor het Cabri-werkblad " Cirkelbundels ".
    Klik hier voor een CabriJavapplet van Stelling 1. Het bewijs van stelling 1, op basis van enkele hulpstellingen , staat in paragraaf 3 2. Twee hulpstellingen en de stelling van Casey en Hart Definitie
    Onder een P-stelsel verstaan we een tweetal cirkels(M,R) en (N,r). Cirkel (M) heet wel de

    64. Euler-cirkel
    Opmerkingen 1 Stelling 5 is als probleem door poncelet (Jean Victor poncelet,17881867, Frankrijk) en Brianchon (Charles Julien Brianchon, 1785-1864
    http://www.pandd.demon.nl/euler.htm
    Euler-cirkels Overzicht Koordenvierhoeken Feuerbach Meetkunde Zie ook de pagina " Complexe getallen en meetkundige bewijzen " 0. Overzicht
  • Definitie en inleiding Euler-cirkels in een vierhoek
    Willekeurige vierhoek

    Koordenvierhoek
    ...
    Stelling van Poncelet-Brianchon
  • 1. Definitie en inleiding
    In onderstaande paragrafen behandelen we enkele eigenschappen van n-hoeken (n = 3, 4, 5) in samenhang met de cirkels van Euler en het concyclisch zijn van bijzondere punten, alsmede het verband tussen het punt van Euler van een vierhoek en een orthogonale hyperbool door de vierhoekpunten (naar Leonard Euler , 1707-1783, Zwitserland). Definitie
    De Euler-cirkel van een koorde van een cirkel met straal R is de cirkel met straal R/2 die als middelpunt het midden van de koorde heeft ( zie figuur 1 figuur 1 figuur 2 In figuur 2 zijn de Euler-cirkels van de zijden van driehoek ABC getekend; de zijden zijn dus opgevat als koorden van de omcirkel van ABC.
    De bijzondere eigenschappen van deze figuur zijn geformuleerd in stelling 1 Stelling 1
    De middelpunten van de Euler-cirkels van de zijden van een driehoek zijn concyclisch.

    65. Kalendarium Matematyczne
    1812 Francuz Jean Victor poncelet formuluje zasade ciaglosci,która zostanie opublikowana dopiero w latach 18621864. 1815
    http://gamma.im.uj.edu.pl/complex2001/imuj2002/files/ciekawostki/kalend/mat/khm7
    Kalendarium historii matematyki
    Wiek XIX 1801 Carl Friedrich Gauss podaje twierdzenie o zamianie ca³ki powierzchniowej zorientowanej na ca³kê potrójn¹ (i odwrotnie). 1801 Gauss pisze prace na temat teorii kongruencji. Jego "Disquisitiones arithmeticae" zapocz¹tkowuje wspó³czesn¹ teoriê liczb. 1803 Matematyk francuski Lazare Carnot og³asza dzie³o "Geometrie de position"; podaje w nim metody, które w du¿ej mierze przyczyni³y siê (z Gasparem Mongem, zob. 1795) do stworzenia podstaw geometrii rzutowej. 1805 Urodzi³ siê matematyk niemiecki Peter Gustaw Lejeune Dirichlet (zm. 1859), autor prac z teorii liczb (w której wykorzysta aparat teorii funkcji analitycznych), z teorii szeregów. Bêdzie siê równie¿ zajmowa³ rachunkiem wariacyjnym i teori¹ potencja³u. 1807 Francuz Jean Baptiste Joseph Fourier zajmuje siê analiz¹ harmoniczn¹; pierwszy stosuje metodê szeregów, które dziœ nazywamy szeregami Fouriera, do rozwi¹zywania konkretnych problemów fizycznych. ok. 1810 Matematyczka francuska Sophie Germain formu³uje twierdzenie nazwane jej imieniem, stanowi¹ce wa¿ny krok do udowodnienia wielkiego twierdzenia Fermata. 1810 Francuz Joseph Diez Gergonne rozpoczyna publikowanie pierwszego czasopisma matematycznego (wydawanego w³asnym nak³adem) "Annales de mathématiques pures et appliquées".

    66. Istorija Matematike, 19. Vek: Fourier,  Poncelet, Cauchy
    The summary for this English page contains characters that cannot be correctly displayed in this language/character set.
    http://rastko.8m.net/vek19/Fourier.html
    Free Web site hosting - Freeservers.com
    XIX
    1808. Бетовен компоновао "Шесту симфонију". 1809. Турци побеђују србе на Чегру и праве "Ћеле-кулу". XIX (Jean Baptiste Joseph Fourier, Mar. 1768 Bibliography: Korner, T.W., Fourier Analysis (1988); Rees, C., et al., Theory and Applications of Fourier Analysis (1980); Wallich, Paul, "Wavelet Theory," Scientific American, January 1991. Превео Р.В. Poncelet, Jean Victor, 1788-1867 Trait des propri t s projectives des figures, 1822 x :x :x M, P k Q P M M PQ k k P Q M M p P k p P Cauchy, Augustin-Louis, Baron, 1789-1857

    67. P/PO PO POACH POBEDONOSTSEV, CONSTANTINE PETROVICH POCHARD POCKET
    JEAN JACQUES LEFRANC, MARQUIS DE POMPONAZZI, PIETRO POMPONIUS, LUCIUS POMPOSA POMPTINEMARSHES PONANI PONCA PONCE poncelet, JEAN VICTOR PONCHER, ETIENNE DE
    http://1911encyclopedia.org/P/PO/
    P/PO
    PO

    POACH

    POBEDONOSTSEV, CONSTANTINE PETROVICH

    POCHARD
    ...
    POZZUOLI

    68. The Science Bookstore - Chronology
    Gmelin, Leopold Born 8/2/1788, 1788 AD, poncelet, Jean Victor Born 7/1/1788,1788 AD, Brande, William T. Born 1/11/1788 Died 2/11/1866, 1788 AD,
    http://www.thesciencebookstore.com/chron.asp?pg=11

    69. Mathematicians From DSB
    Translate this page Poinsot, Louis, 1777-1859. Poisson, Siméon-Denis, 1781-1840. poncelet,Jean Victor, 1788-1867. Pringsheim, Alfred, 1850-1941. Proclus,, 410-485.
    http://www.henrikkragh.dk/hom/dsb.htm
    Last modification: document.write(document.lastModified)
    Webmaster

    Validate html
    Mathematicians from the Dictionary of Scientific Biography (DSB)
    Abel, Niels Henrik Argand, Jean Robert Artin, Emil Beltrami, Eugenio Berkeley, George Bertrand, Joseph Louis François Bianchi, Luigi Bolyai, János (Johann) Bolyai, Farkas (Wolfgang) Bolzano, Bernard Bombelli, Rafael Borel, Émile (Félix-Édouard-Justin) Bouquet, Jean-Claude Briot, Charles Auguste Cantor, Georg Carathéodory, Constantin Cardano, Girolamo Cauchy, Augustin-Louis Cayley, Arthur Chebyshev, Pafnuty Lvovich Clairaut, Alexis-Claude Clausen, Thomas Clebsch, Rudolf Friedrich Alfred Colden, Cadwallader Collinson, Peter Condorcet, Marie-Jean-Antoine-Nicolas Caritat, marquis de Cramer, Gabriel Crelle, August Leopold d'Alembert, Jean le Rond de Morgan, Augustus Dedekind, (Julius Wilhelm) Richard Delambre, Jean-Baptiste Joseph Descartes, René du Perron Dini, Ulisse Dirichlet, Gustav Peter Lejeune du Bois-Reymond, Paul David Gustav Duhamel, Jean Marie Constant Eisenstein, Ferdinand Gotthold Max Euclid

    70. 1Up Info > Poncelet, Jean Victor (Mathematics, Biographies) - Encyclopedia
    You are here 1Up Info Encyclopedia Mathematics, Biographies poncelet,Jean Victor, 1Up Info A Portal with a Difference. poncelet, Jean Victor.
    http://www.1upinfo.com/encyclopedia/P/Poncelet.html
    You are here 1Up Info Encyclopedia Mathematics, Biographies Poncelet, Jean Victor ... News Search 1Up Info
    ENCYCLOPEDIA
    Mathematics, Biographies Poncelet, Jean Victor Related Category: Mathematics, Biographies Poncelet, Jean Victor Pronunciation Key projective geometry and incorporated his results in
    Related Resources and Utilities AMAZON All Products Books Magazines Popular Music Classical Music Video DVD Electronics Software Outdoor Living Wireless Phones Computers Outlet
    Read articles on eLibrary:
    Related Links projective geometry
    Content on this web site is provided for informational purposes only. We accept no responsibility for any loss, injury or inconvenience sustained by any person resulting from information published on this site. We encourage you to verify any critical information with the relevant authorities. Home Contact Us
    Privacy

    Links Directory

    ©1Up Info

    71. 1Up Info > Mathematics, Biographies - Encyclopedia
    Blaise • Peirce, Benjamin • Plücker, Julius • Poincaré, Jules Henri •Poisson, Siméon Denis • poncelet, Jean Victor • Ramanujan, Srinivasa
    http://www.1upinfo.com/encyclopedia/categories/mathbio.html

    History
    People Places Wildlife, Animals, and Plants ... News Search 1Up Info
    ENCYCLOPEDIA
    Mathematics, Biographies Articles
    Abel, Niels Henrik
    Acarya

    Alembert, Jean le Rond d'

    Alhazen
    ...
    Zygmund, Antoni
    Editor's Pick Cricket World Cup 2003
    Atomic Bomb
    Colin Powell

    Cricket
    ...
    World War II
    Content on this web site is provided for informational purposes only. We accept no responsibility for any loss, injury or inconvenience sustained by any person resulting from information published on this site. We encourage you to verify any critical information with the relevant authorities. Home Contact Us Privacy Links Directory ©1Up Info

    72. Mathematicians
    1780 Sommerville, Mary Fairfax. 1781 Poisson, Simeon. 1788 poncelet, JeanVictor. 1790 Möbius, August. 1791 Babbage, Charles. 1802 Abel, Niels Henrik.
    http://members.aol.com/PennyGar/mathematicians.html
    B.C. 600 Thales 569 Pythagoras 495 Zeno 470 Hippocrates 428 Plato 408 Eudoxus 384 Aristotle 330 Euclid 250 Eratosthenes 287 Archimedes 262 Apollonius Hypsicles 180 Hipparchus Marinus A.D. 100 Nichomachus 100 Diophantus 100 Ptolemy 370 Hypatia 825 al-Khowârizmî 1048 Khayyam, Omar 1114 Bhaskara 1180 Fibonacci, Leonardo 1201 al-Din, Nasir (al-Tusi) 1300 Shije, Zhu 1430 al-Kashi, Jemshid 1452 da Vinci, Leonardo 1465 Ferro, Scipio 1473 Copernicus, Nicolaus 1499 Tartaglia (Nicolo Fontana) 1501 Cardano, Girolamo 1540 Viète, Fran?ois 1548 Stevin, Simon 1546 Brahe, Tycho 1550 Napier, John 1560 Harriot, Thomas 1564 Galilei, Galileo 1571 Kepler, Johannes 1574 Oughtred, William 1591 Desargues, Gérard 1596 Descartes, René 1598 Cavalieri, Bonaventura 1601 Fermat, Pierre de 1616 Wallis, John 1623 Pascal, Blaise 1629 Huygens, Christian 1630 Barrow, Isaac 1638 Gregory, James

    73. Origin
    The most prominent member of the poncelet family was Jean Victor poncelet(17881867), a French mathematician. The poncelet, a unit
    http://possley.family-history.com/origin.htm
    Origin of the Name
    Surnames began to be adopted during the Middle Ages. Poncelet is a French diminutive cognate form of the English (of Norman origin) name Points, which comes from the Medieval given name Ponche. That name can be traced back to Latin Pontius, which may have come from an Italian cognate of Quintus (fifth-born). Variations of Points are Poyntz and Punch. Other cognate forms are Pons, Ponce, Point (French); Ponzi, Ponzio, Ponzo, Punzi, Punzio, Punzo (Italian); Ponce (Spain); Poms (Dutch). Other diminutive forms include Pointel (English); Ponci, Poncin, Poncet, Punchet, Punchon (French); Ponzetti, Punzetti, Punzetto (Italian). The diminutive form of a name is a pet form, such as Billy is to Bill or William; Tommy is to Thomas, and so on. This explanation was provided by Larry Hoefling who maintains an Internet web site dedicated to information about surnames (see http://www.clanhuston.com When our Poncelet ancestors came to this country, they could not write or spell their name so the English-speaking clerks wrote it as they heard it pronounced: Possley. Other variant spellings found in Ozaukee County records include Ponslet, Poncle, Puncle, Puncele, Ponsel, Ponsle, Ponsley, Ponsli, Ponsly, Possle, Possele, Possely, Posseley, Polslese, Pously, Posly, Pusle, The most prominent member of the Poncelet family was Jean Victor Poncelet (1788-1867), a French mathematician. The poncelet, a unit of measurement, was named after him.

    74. Les Français Et Les Suisses Francophones En Russie Du Moyen-Âge à Nos Jours.
    Translate this page poncelet, Jean Victor, mathématicien, commandant de l'école Polytechniqueavec rang de général, 1788-1867, 301. Poniatowski, Joseph-Antoine, 11, 293.
    http://www.geneaguide.com/russie/krusse_p.htm
    Le portail de la généalogie Accueil Le club Salle de lecture Salle de recherche ... Partenaires
    P, Q o 1812 Paley, princesse Panthir, Jenny Papillon de Latapy, Louise Catherine Parfait, professeur Paris, comte de Parissow, Emilie Park, Anne Parquin, Denis-Charles o 1721 Pascal, Alexandre ou Alexandrine Pascal, Pierre, historien communiste Pasquier, Laure Paterno-Moncada, Catherine, princesse Paterno-Moncada, prince Patin, Louise Patkull, Aleksandr von, aide de camp de l'empereur Pavel, Aleksandrovitch, grand-duc Peltier, R., contre-amiral Percier, Charles, architecte Perdrizet, Henri o 1889 o 1889 o vers 1804 o 1848 o vers 1816 Pernet Perpigniani Perret, Louis, pilote Perrey, Jean Adolphe Perrin, Claude Victor, voir Victor Perrin de Bellune, Louise Pierrette Victorine Perrin, voir aussi Victor Perronneau, Jean-Baptiste, peintre et pastelliste Perronnet, architecte Persigny, vicomte de Persin, Boris Persin, Jean-Baptiste-Jules, comte de Suzor, avocat o 1801 Persin, Marie Persin, Nathalie Persin, Olga o 1844 Persin, Serge

    75. Browse The Cornell Library Historical Math Monographs
    Translate this page des figures, ouvrage utile à ceux qui s'occupent des applications de la géométrieet d'opérations géométriques sur le terrain by poncelet, Jean Victor.
    http://historical.library.cornell.edu/math/title_T.html
    About the Collection Browse Collection Home Search Collection ... Help A B C D E ... S T U V WXYZ Titles "T" The teaching of elementary mathematics
    by Smith, David Eugene Théorie de la fonction gamma
    by Limbourg, Henri Jules Joseph Theorie Der Abel'schen Functionen
    by Stahl, Hermann Theorie der Abel'schen Functionen
    by Weierstrass, Karl Theorie der Abelschen Functionen vom Geschlecht 3
    by Weber, Heinrich Theorie der algebraischen funktionen und ihrer integrale
    by Landfriedt, E Theorie Der Algebraischen Zahlen (Volume 1)
    by Hensel, Kurt Theorie der analytischen functionen
    by Biermann, Otto Die Theorie Der Besselschen Funktionen
    by Schafheitlin, Paul Theorie der Doppeltperiodischen functionen einer veranderlichen grösse (Volume 1)
    by Krause, Martin Theorie der Doppeltperiodischen functionen einer veranderlichen grösse (Volume 2) by Krause, Martin Theorie der elliptischen funktionen by Durège, Heinrich Theorie der eindeutigen analytischen funktionen. Umarbeitung unter mitwirkung des verfassers deutsch herausgegeben von A. Gutzmer by Vivanti, G (Giulio) Theorie der elliptischen Funktionen by Krause, Martin

    76. Browse The Cornell Library Historical Math Monographs
    Translate this page Théorie du potentiel Newtonien. Leçons professés à la Sorbonnependant le premier semestre 1894-1895. poncelet, Jean Victor
    http://historical.library.cornell.edu/math/math_P.html
    About the Collection Browse Collection Home Search Collection ... O P R S TU V ... XYZ Authors "P" Page, James Morris Painlevé, Paul Parfentieff, Nikolai Nikolaev Pascal, Ernesto Pasch, Moritz Peano, Giuseppe Peirce, Benjamin

    77. Algo De Historia
    Translate this page publicación en el año 1799. Finalmente cave mencionar al francésJean Victor poncelet (1788-1867). A él se debe a introducción
    http://www.albares.com/dibujotecnico/salaestudios/generalidades/historia/histori
    SALA DE ESTUDIOS
    INTRODUCCIÓN HISTÓRICA
    INTRODUCCIÓN

    Desde sus orígenes, el hombre ha tratado de comunicarse mediante grafismos o dibujos. Las primeras representaciones que conocemos son las pinturas rupestres, en ellas no solo se intentaba representar la realidad que le rodeaba, animales, astros, al propio ser humano, etc., sino también sensaciones, como la alegría de las danzas, o la tensión de las cacerías.
    A lo largo de la historia, este ansia de comunicarse mediante dibujos, ha evolucionado, dando lugar por un lado al dibujo artístico y por otro al dibujo técnico. Mientras el primero intenta comunicar ideas y sensaciones, basándose en la sugerencia y estimulando la imaginación del espectador, el dibujo técnico, tiene como fin, la representación de los objetos lo más exactamente posible, en forma y dimensiones.
    Hoy en día, se está produciendo una confluencia entre los objetivos del dibujo artístico y técnico. Esto es consecuencia de la utilización de los ordenadores en el dibujo técnico, con ellos se obtienen recreaciones virtuales en 3D, que si bien representan los objetos en verdadera magnitud y forma, también conllevan una fuerte carga de sugerencia para el espectador.

    78. A Small History Of Poncelets Undershot Water Wheel
    The 1820s' environment in which French mathematican Jean Victor poncelet developedhis unique machine was in the midst of the industrial revolution, just about
    http://www.powerpal.co.uk/pon02.html
    Poncelets' undershot waterwheel Designed in 1824, flourishing for 10 years and largely forgotten for more than a century the ingenious Poncelet design pointed the way to the great changes in water engines that were to occur in the mid 1800's. The Poncelet is a graceful, efficient, undershot wheel quite unlike any other before it.
    The 1820s' environment in which French mathematican Jean Victor Poncelet developed his unique machine was in the midst of the industrial revolution, just about every hydro site in Britain and Europe was being exploited and the steam engine was a generation away. Every inch of head and every gallon of water was treasured, governments of France and others offered large prizes and great honours to designers of more efficient water wheels.
    It was estimated there were more than 60,000 operating water wheels in France in the mid 1820s. Many of the streams in the industrial areas were rather flat. Jean V studied the lowly undershot, the least efficient of all water wheels and came up with a design that more than doubled its output. His design met with instant sucess and several maunfacturers began erecting them immediately before waitng for the many years of testing by others.
    The French Academy of Science awarded him its 'prix de mechanique' , many Poncelet wheels were installed chiefly in France and Germany in the next few years.

    79. Mostra Eventos Da Data Selecionada
    Translate this page 01/07/1788 - Nascimento de Jean Victor poncelet (matemático francês) 02/07/1820- Nascimento de William John Macquorn Rankine (matemático escocês) 02/07
    http://www.ponteiro.com.br/mostrad8.php?w=13&pg=6

    80. Poncelet
    Translate this page Zurück zur Übersicht Biografien. poncelet, Jean Victor, französischerIngenieur und Mathematiker * 1. 7. 1788 Metz, † 22. 12. 1867 Paris.
    http://www.studienseminare-duesseldorf.nrw.de/sekundI/Seminare/Mathe/Kaleidoskop
    Zurück zur Übersicht Biografien Poncelet, Jean Victor, französischer Ingenieur und Mathematiker
    Arbeitsgebiete: Projektive Geometrie Poncelet war Offizier; schuf die Grundlagen der projektiven Geometrie und konstruierte ein unterschlächtiges Wasserrad.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 96    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter