Geometry.Net - the online learning center
Home  - Scientists - Schooten Frans Van

e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 94    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Schooten Frans Van:     more detail
  1. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  2. People From Leiden: Jan Van Goyen, Herman Boerhaave, Frans Van Schooten, Jan Bake, Rembrandt, Rodney Glunder, Geertgen Tot Sint Jans
  3. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2009-07-17
  4. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  5. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  6. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  7. 1615 Births: Pope Innocent Xii, Daniel Schultz, Frans Van Schooten, Nicolas Fouquet, Richard Baxter, Dara Shikoh, Salvator Rosa
  8. 1660 Deaths: Diego Velázquez, Charles X Gustav of Sweden, Thomas Harrison, Frans Van Schooten, Vincent de Paul, Thomas Welles, Gaston
  9. Leiden University Faculty: Albert Einstein, Heike Kamerlingh Onnes, Hendrik Lorentz, Paul Ehrenfest, Herman Boerhaave, Frans Van Schooten

1. Van Schooten's Parabola
Frans van Schooten lived from 1615 to 1660 Van Schooten was one of the main people to promote the spread of Cartesian geometry. Find out more at
http://members.aol.com/geometrie11/koorgeom/vparabel.html
Van Schootens Parabelzirkel
Der in der nebenstehenden Abbildung dargestellte Gelenkmechanismus wurde im 17. Jahrhundert von Frans van Schooten, einem niederländischen Mathematiker, erfunden und ist in einem von ihm veröffentlichten Buch beschrieben. Wenn man den Punkt G an der waagerechten Führungsschiene entlangzieht, bewegt sich das orthogonale Lineal GD und die Raute BFGH mit. Am Schnittpunkt D der Rautendiagonale und des orthogonalen Lineals ist ein Zeichenstift befestigt, der den Parabelbogen zeichnet. Weiter unten finden Sie ein zugehöriges Applet, mit dem der Zirkel simuliert wird. Die roten Punkte können nach dem Anklicken bei gedrückter linker Maustaste gezogen werden. Folgen Sie den Anweisungen in den Aufgaben.
Aufgaben
  • Führen Sie die Bewegungen aus um den Parabelbogen zu zeichnen.
  • Welche Lage hat die Gerade BH bezüglich der Parabel?
  • Vergleichen Sie diese Anordnung mit der auf einem früheren Arbeitsblatt und erläutern Sie die Funktionsweise des Zirkels. Welche Aufgabe hat insbesondere die Raute FGHB? Falls Sie noch keine Kenntnis über die Parabel als Ortslinie haben, informieren Sie sich zunächst, indem Sie auf Parabel klicken.
  • 2. Schooten
    Frans van Schooten. Born 1615 in Leiden, Netherlands Died 29 May 1660in Leiden, Netherlands. Click the picture above to see a larger version
    http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Schooten.html
    Frans van Schooten
    Born: 1615 in Leiden, Netherlands
    Died: 29 May 1660 in Leiden, Netherlands
    Click the picture above
    to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Frans van Schooten should not be confused with his father, Frans van Schooten (the elder), who was professor at the engineering school in Leiden. He enrolled at the University of Leiden in 1631 and he studied mathematics there. In 1637 Descartes visited Leiden and met van Schooten. This proved important for van Schooten since Descartes provided contacts for van Schooten to become acquainted with Mersenne 's circle in Paris. Some time after this he went abroad, travelling first to Paris and then to London where he stayed from 1641 to 1643. He discussed mathematics in these two centres and he continued to correspond with the mathematicians he met in these towns after his return to Leiden, but unfortunately this correspondence is now lost. While in Paris he obtained manuscripts 's work and he later published them in Leiden.

    3. Poster Of Schooten
    Frans van Schooten. lived from 1615 to 1660. Van Schooten was oneof the main people to promote the spread of Cartesian geometry.
    http://www-gap.dcs.st-and.ac.uk/~history/Posters2/Schooten.html
    Frans van Schooten lived from 1615 to 1660 Van Schooten was one of the main people to promote the spread of Cartesian geometry. Find out more at
    http://www-history.mcs.st-andrews.ac.uk/history/
    Mathematicians/Schooten.html

    4. Schooten, Frans Van
    Catalog of the Scientific Community schooten, frans van. frans van schooten(the elder), professor at the engineering school connected with Leiden.
    http://es.rice.edu/ES/humsoc/Galileo/Catalog/Files/schooten.html
    Catalog of the Scientific Community
    Schooten, Frans van
    Note: the creators of the Galileo Project and this catalogue cannot answer email on genealogical questions.
    1. Dates
    Born: Leiden, ca. 1615 (Nieuw Nederlandsch Biographisch Woordenboek does not insert the "ca.")
    Died: Leiden, 29 May 1660
    Dateinfo: Birth Uncertain
    Lifespan:
    2. Father
    Occupation: Academic, Engineer
    Frans van Schooten (the elder), professor at the engineering school connected with Leiden. The father was also a military engineer.
    No clear indication of financial status.
    3. Nationality
    Birth: Dutch
    Career: Dutch
    Death: Dutch
    4. Education
    Schooling: Leiden
    Enrolled in Leiden in 1631. No source says anything about a degree, and given the tendency always to mention one, I assume then that Schooten did not persevere to one. He travelled to Paris and London about 1637, and there met the leading mathematicians. He was back in Leiden in 1643.
    5. Religion
    Affiliation: Calvinist
    6. Scientific Disciplines
    Primary: Mathematics
    He was trained in mathematics at Leiden, and he met Descartes there in 1637 and read the proofs of his Geometry.
    In Paris he collect manuscripts of the works of Viète, and in Leiden he published Viète's works.

    5. Frans Van Schooten
    Resumos de biografias de personalidades da historia da humanidade artistas, cientistas, engenheiros, escritores, governos, inventores, medicos, etc.
    http://www.sobiografias.hpg.com.br/FransSch.htm
    Frans van Schooten nascido em Le y den, Netherlands , sucessor de seu pai o velho Entrou na Universidade de Leiden (1631) Ao visitar Leiden (1637) Descartes o , em Paris. Publicou os manuscritos de Descartes Exercitationes mathematicae Johan de Witt Johan Hudde (1629-1704) e Hendrick Van Heuraet (1633-1660) Christian Huyghens (1629-1695) Figura copiada do site TURNBULL WWW SERVER:
    http://www-history.mcs.st-andrews.ac.uk/

    Nova B U S C A :

    6. SCHOOTEN
    References for the biography of frans van schooten References for frans van schooten. Biography in Dictionary of Scientific Biography (New York 19701990).
    http://www.cobra.pages.nom.br/fm-schooten.html
    COBRA PAGES e seus objetivos educacionais reg.
    Quem somos
    COBRA PAGES P.M.F-perguntas mais frequentes Filosofia Moderna e Temas de Filosofia Comportamento Boas Maneiras Feminismo ... CONTACTO NOTAS Para retornar
    COBRA PAGES
    em que estava,
    use a seta de
    volta do seu
    navegador
    Schooten, Frans van Exercitationes mathematicae R.Q.Cobra
    Para citar este texto: Cobra, Rubem Queiroz -

    7. Frans Van Schooten
    23 Mar 1999 frans van schooten, by Samuel S. Kutler
    http://mathforum.com/epigone/math-history-list/nimoxplal
    a topic from math-history-list
    Frans van Schooten
    post a message on this topic
    post a message on a new topic

    23 Mar 1999 Frans van Schooten , by Samuel S. Kutler
    24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
    24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
    25 Mar 1999 Re: Frans van Schooten , by Rickey, F. PROF MATH
    25 Mar 1999 Re: Frans van Schooten , by Samuel S. Kutler
    The Math Forum

    8. Schooten
    Biography of frans van schooten (16151660) frans van schooten. Born 1615 in Leiden, Netherlands
    http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Schooten.html
    Frans van Schooten
    Born: 1615 in Leiden, Netherlands
    Died: 29 May 1660 in Leiden, Netherlands
    Click the picture above
    to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Frans van Schooten should not be confused with his father, Frans van Schooten (the elder), who was professor at the engineering school in Leiden. He enrolled at the University of Leiden in 1631 and he studied mathematics there. In 1637 Descartes visited Leiden and met van Schooten. This proved important for van Schooten since Descartes provided contacts for van Schooten to become acquainted with Mersenne 's circle in Paris. Some time after this he went abroad, travelling first to Paris and then to London where he stayed from 1641 to 1643. He discussed mathematics in these two centres and he continued to correspond with the mathematicians he met in these towns after his return to Leiden, but unfortunately this correspondence is now lost. While in Paris he obtained manuscripts 's work and he later published them in Leiden.

    9. Schooten | Frans | Van | 1615-1660 | Dutch Mathematician
    the project the collections biographies multimedia researchuses. schooten frans van 16151660 Dutch mathematician.
    http://www.nahste.ac.uk/pers/s/GB_0237_NAHSTE_P1087/
    the project the collections biographies multimedia the project the collections biographies multimedia ... Index Chartarum in M.S. C. in folio

    10. Rahir (was: Re: Frans Van Schooten) By Antreas P. Hatzipolakis
    Subject Rahir (was Re frans van schooten) Author Antreas P. Hatzipolakis xpolakis@otenet.gr Date Thu, 25 Mar 1999
    http://mathforum.com/epigone/math-history-list/glandprachand
    Rahir (was: Re: Frans van Schooten) by Antreas P. Hatzipolakis
    reply to this message
    post a message on a new topic

    Back to math-history-list
    Subject: Rahir (was: Re: Frans van Schooten) Author: xpolakis@otenet.gr Date: The Math Forum

    11. People Index: S
    schooten frans van 16151660 Dutch mathematician; Sclater Philip Lutley 1829-1913 editor and president of the Zoological Society of London;
    http://www.nahste.ac.uk/pers/s/
    the project the collections biographies multimedia ... Z
    People index: S

    12. [Huygens, Christian]. Schooten, Frans Van., Exercitationum Mathematicarum Libri
    Michael R. Thompson Bookseller. Huygens, Christian. schooten, frans van.Exercitationum mathematicarum libri quinque. Leiden J. Elsevir, 1657.
    http://www.polybiblio.com/mrtbksla/11847.html
    Michael R. Thompson Bookseller
    [Huygens, Christian]. Schooten, Frans van. Exercitationum mathematicarum libri quinque. Leiden: J. Elsevir, 1657 Five parts in one, quarto., [xii], 534, [1, errata] pp., Contemporary panelled calf, skillfully rebacked, preserving the old, somewhat worn, gilt morocco label., Corners rubbed, ink inscription on front free endpaper: "Presented to the Library of St. Mary's Oscott by C. Baxter Esq. Librarian of Kingston on Thames. November 17th 1887;" another ink notation in the same hand on front pastedown. Two old paper labels on binding, indicating shelf placement. Occasional light foxing. Overall a very good, clean copy. First edition of Schooten's book, which contains the first appearance of Huygens's treatise on the theory of probability, printed as an appendix., In the first section of the book, Schooten applies analytical geometry to the solution of many interesting and difficult problems. He recommends for the first time the use of coordinates in space of three dimensions. Schooten (1615-60), who was professor of mathematics at Leiden, was a pupil of Descartes and a teacher of Huygens. Huygens's (1629-1695) epoch-making treatise, De rationiis in ludo aleae, is the earliest and one of the most important papers on the subject or probability. Bernouili reprinted it, with a commentary, as the first of the four parts of his famous Ars conjectandi. See the H.J.M. Bos article on Huygens in the D.S.B., Bierens de Haan, Bibliographie Néerlandaise, 4222. Todhunter, Theory of Probability, p. 25. Willems, 811.

    13. Re: Frans Van Schooten By Samuel S. Kutler
    1661 Alt name Beaune, Florimond de, 16011652 schooten, frans van, 1615-1660 Hudde, Johan, d. 1704 Heuraet, Henricus van Bartholinus, Erasmus, 1625
    http://mathforum.org/epigone/math-history-list/nimoxplal/v01540b00b3201a43e012@[
    Re: Frans van Schooten by Samuel S. Kutler
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to math-history-list
    Subject: Re: Frans van Schooten Author: s-kutler@sjca.edu Date: http://www.ohiolink.edu/ http://www.umi.com/ The Math Forum

    14. Schooten Portrait
    frans van schooten. JOC/EFR August 2001
    http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Schooten.html
    Frans van Schooten
    JOC/EFR August 2001 The URL of this page is:
    http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Schooten.html

    15. Frans Van Schooten
    a topic from mathhistory-list frans van schooten. post a message onthis topic post a message on a new topic 23 Mar 1999 frans van
    http://mathforum.org/epigone/math-history-list/nimoxplal
    a topic from math-history-list
    Frans van Schooten
    post a message on this topic
    post a message on a new topic

    23 Mar 1999 Frans van Schooten , by Samuel S. Kutler
    24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
    24 Mar 1999 Re: Frans van Schooten , by Antreas P. Hatzipolakis
    25 Mar 1999 Re: Frans van Schooten , by Rickey, F. PROF MATH
    25 Mar 1999 Re: Frans van Schooten , by Samuel S. Kutler
    The Math Forum

    16. Historia Matematica Mailing List Archive: [HM] Frans Van Schooten
    HM frans van schooten. Samuel S. Kutler (skutler@sjca.edu) Tue, 23 Mar 1999083945 -0500 (EST) Here is what Morris Kline says about frans van schooten
    http://sunsite.utk.edu/math_archives/.http/hypermail/historia/mar99/0121.html
    [HM] Frans van Schooten
    Samuel S. Kutler s-kutler@sjca.edu
    Tue, 23 Mar 1999 08:39:45 -0500 (EST)
    Friends:
    Here is what Morris Kline says about Frans van Schooten:
    The first task was to explain Descartes's idea. A Latin translation of
    La Geometrie by Frans van Schooten (1615-60), first published in 1649
    and reprinted several times, not only made the book available in the
    language all scholars could read but contained a commentary which
    expanded Descartes's compact presentation. In the edition of
    1659-61, van Schooten actually gave the algebraic form of a
    transformation of coordinates from one base line (x-axis) to another.
    He was so impressed with the power of Descartes's method that he claimed the Greek geometers had used it to derive their results. Having the algebraic work, the Greeks, according to van Schooten, saw how to obtain the results syntheticallyhe showed how this could perspicuous than the algebraic, to amaze the world. Van Schooten may

    17. Historia Matematica Mailing List Archive: Re: [HM] Frey Curves In The Work Of Hu
    Kutler HM frans van schooten ; Next message Samuel S. Kutler HM frans vanschooten ; Previous message Paul Yiu Re HM 4 triangles in a rectangle ;
    http://sunsite.utk.edu/math_archives/.http/hypermail/historia/mar99/0120.html
    Re: [HM] Frey curves in the work of Hurwitz
    Franz Lemmermeyer lemmerm@mpim-bonn.mpg.de
    Tue, 23 Mar 1999 15:53:38 +0100 (MET)
    On Mon, 22 Mar 1999, Jim Propp wrote:
    It has to be defined over Q, of course.
    Yes.
    The talk was given in February 1976; he does not cite
    Mazur, but surely was aware of his results.
    [..Hurwitz..]
    positive integers, not both even.
    franz

    18. Van Schootens Ellipse
    Translate this page Der Gelenkmechanismus, der in der nebenstehenden Abbildung dargestellt wird, wurdevon frans van schooten, einem holländischen Mathematiker aus dem 17.
    http://members.aol.com/geometrie11/koorgeom/vellipse.html
    Van Schootens Ellipsenzirkel
    Der Gelenkmechanismus, der in der nebenstehenden Abbildung dargestellt wird, wurde von Frans van Schooten, einem holländischen Mathematiker aus dem 17. Jahrhundert erfunden. Wenn man am Punkt E zieht, bewegt sich die gesamte Raute OIPG und der Stift am Punkt B zeichnet eine Spur, von der wir zeigen wollen, dass es eine Ellipse ist. Der Mechanismus ist an den Punkten H und I auf der Zeichenunterlage befestigt.
    Beim Applet weiter unten muss man allerdings am Punkt G ziehen.
    Aufgaben
  • Fertigen Sie zunächst im Appletfenster eine "Zeichnung" mit den vorgegebenen Einstellungen an.
  • Verändern Sie die Seitenlänge der Raute, indem Sie die Strecke oben links durch Ziehen am rechten Ende verlängern. Prüfen Sie ob dies einen Einfluss auf die Ellipsenform oder -größe hat.
  • Ziehen Sie den Punkt I näher an A heran und löschen Sie die Spurpunkte durch Anklicken des roten Kreuzes unten rechts. Fertigen Sie eine neue "Zeichnung" an. Was hat sich geändert?
  • Welche Lage hat die Gerade OP bezüglich der Ellipse und welche Aufgabe hat die Raute OIPG im Gelenkmechanismus?
    Wie funktioniert's?
  • 19. Ellips [5]
    snijdende lijnen Johan de Witt (16251672), raadpensionaris van de Staten van Holland,voegt op 8 oktober 1658 aan een brief aan frans van schooten de Jongere
    http://www.pandd.demon.nl/ellips/ellips5.htm
    Ellips-constructies met Cabri [5] Constructie Bewijs Kegelsneden Macro's voor kegelsneden ... Cabri Vorige Begin Volgende 5. Constructie gebaseerd op de verplaatsing van een lijnstuk (met vaste lengte) over twee snijdende lijnen
    Johan de Witt (1625-1672), raadpensionaris van de Staten van Holland, voegt op 8 oktober 1658 aan een brief aan Frans van Schooten de Jongere (1615-1660) "eene aenspraecke aan UE" toe, waarin (in vertaling van Dr.A.W.Grootendorst) hij schrijft: "Toen ik echter de leerboeken van de overige kromme lijnen -voorzover deze door de Ouden zijn overgeleverd en door jongeren zijn verklaard- nauwkeurig had bestudeerd, achtte ik het volslagen in te gaan tegen de natuurlijke orde -die men in de wiskunde zoveel mogelijk in acht moet nemen- dat men de oorsprong van deze krommen zoekt in een ruimtelijk lichaam en deze vervolgens overbrengt naar het platte vlak." De Witt stoorde zich blijkbaar aan het feit, dat de bekende kegelsneden door de Grieken (onder wie Apollonius van Perga ) de vlakke krommen via ruimtelijke beschouwingen genereerden, namelijk als doorsnijding van een kegel en een plat vlak.

    20. Ellips [8]
    8. Ellipsograaf Vermoedelijk op basis van de door Johan de Witt (16251672) gegeven(zie paragraaf 5) definitie is door frans van schooten de Jongere (1615-1660
    http://www.pandd.demon.nl/ellips/ellips8.htm
    Ellips-constructies met Cabri [8] Ellipsograaf Constructie Bewijs Kegelsneden ... Cabri Vorige Begin 8. Ellipsograaf
    Vermoedelijk op basis van de door Johan de Witt (1625-1672) gegeven ( zie paragraaf 5 ) definitie is door Frans van Schooten de Jongere (1615-1660) een apparaat ontwikkeld waarmee een ellips kan worden getekend; dit apparaat staat bekend onder de naam "ellipsograaf van Van Schooten" ( zie figuur 8a en figuur 8b figuur 8a figuur 8b Twee stangen zijn in het punt B scharnierend aan elkaar verbonden. In het punt E is een schrijfstift bevestigd.
    Het eindpunt A van de ene stang is scharnierend bevestigd in de oorsprong. Het punt D van de andere stang kan alleen horizontaal worden bewogen langs een lat KL..
    In het " Museo Universitario di Storia Naturale e della Strumentazione Scientifica" te Modena (Italië) bevindt zich ook een dergelijk apparaat ( zie figuur 9 figuur 9 Constructie
    We kunnen in Cabri een model van deze ellipsograaf maken.
    In figuur 8a kan het punt D op KL precies de lengte van AB+BD afleggen.
    De maximale lengte van KL is dus 4 AB.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 94    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter