Geometry.Net - the online learning center
Home  - Scientists - Van Schooten Frans

e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-95 of 95    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Van Schooten Frans:     more detail
  1. People From Leiden: Jan Van Goyen, Herman Boerhaave, Frans Van Schooten, Jan Bake, Rembrandt, Rodney Glunder, Geertgen Tot Sint Jans
  2. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10
  3. 1615 Births: Pope Innocent Xii, Daniel Schultz, Frans Van Schooten, Nicolas Fouquet, Richard Baxter, Dara Shikoh, Salvator Rosa
  4. 1660 Deaths: Diego Velázquez, Charles X Gustav of Sweden, Thomas Harrison, Frans Van Schooten, Vincent de Paul, Thomas Welles, Gaston
  5. Leiden University Faculty: Albert Einstein, Heike Kamerlingh Onnes, Hendrik Lorentz, Paul Ehrenfest, Herman Boerhaave, Frans Van Schooten
  6. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2009-07-17
  7. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  8. Exercitationum Mathematicarum (1656) (Latin Edition) by Frans Van Schooten, 2010-09-10
  9. Geometria A Renato Descartes Anno 1637 Gallice Edita (1683) (Latin Edition) by Rene Descartes, Florimond De Beaune, et all 2010-09-10

81. ArtLex On Dutch Art
frans Hals or one of his followers, The Merry Lute Player, c. 1624 Floris van schooten(Dutch, active 16121655), Still Life with Beaker, Cheese, Butter and
http://www.artlex.com/ArtLex/d/dutch.html
D utch art - Also known as art of the Netherlands, and as art of the principal state of Holland. Making generalizations about the visual culture of any group of people is a crude endeavor, especially with a culture as diverse as that of the Netherlands. With this thought in mind, know that this survey, as any must be, is tremendously limited in its breadth and depth. [Expect a more in-depth article to appear here soon.] Examples: This page is merely a construction site!! Quentin Metsys (Dutch, 1465/6-1530), The Banker and his Wife oil on panel , 0.705 x 0.670 m, Louvre. See narrative art Antwerp School, Pierre de Moucheron (1508-1567), Merchant of Middleburg and Antwerp, and his family oil on panel , 108 x 246 cm, Rijksmuseum, Amsterdam, Netherlands. Holland, 1570, Dalmatic polychrome wool and silk, interlocking tapestry weave , with embroidery accentuating details of the design , 43 1/4 x 45 1/2 inches (109.8 x 115.6 cm), Los Angeles County Museum of Art. This is part of a rare set of Roman Catholic priest's vestments to survive the Protestant Reformation. See costume Jacques de Gheyn the Elder (Dutch, 1565-1629)

82. PRO-GEN Output
Johannes Willem VERBAKEL, Adriana 570 SCHEEPER, frans van der VELDT der SCHOOT,Rudolf SCHENCK, Anna Elisabeth 2586 van schooten, Pieter LAMMERSE
http://www.xs4all.nl/~timmers/Relms.html

83. Van Schooten's Ellipse
van schooten's Ellipse. The mechanical linkage below appears in the work ofFrans van schooten, a Dutch mathematician who lived in the 17th century.
http://www15.addr.com/~dscher/vellipse.html
Van Schooten's Ellipse
The mechanical linkage below appears in the work of Frans van Schooten, a Dutch mathematician who lived in the 17th century. As you drag point A, you'll notice that rhombus ADFE expands and contracts. Point B (the traced point) lies at the intersection of CA and the rod passing through rhombus vertices D and E. Scroll down when you're ready to explore more.
Sorry, this page requires a Java-compatible web browser.
After you've traced an ellipse, drag an endpoint of the segment in the upper left-hand corner. This segment controls the side length of rhombus ADFE. Now drag point A again. Does this new rhombus cause you to trace a different ellipse? Drag point C closer to point F. Click on the red "X" in the lower right-hand corner to clear the trace. Now drag point A again to see if you trace the same ellipse as before. View Van Schooten's original illustration of this linkage.
Why it Works
Perhaps the best way to understand why this linkage draws ellipses is to first study the Folded Circle construction . After you've done so, click once on the "show" button below. You'll see a red circle with center at C passing through point A. Drag point A around the circle. Do you see the similarity between this construction and the Folded Circle method? What's the purpose of rhombus ADFE?

84. Van Schooten's Parabola
van schooten's Parabola. The mechanical linkage below appears in the work ofFrans van schooten, a Dutch mathematician who lived in the 17th century.
http://www15.addr.com/~dscher/schooten.html
Van Schooten's Parabola
The mechanical linkage below appears in the work of Frans van Schooten, a Dutch mathematician who lived in the 17th century. As you drag point G, you'll notice that rhombus BFGH expands and contracts. Rod FD is attached to the rhombus at F and H. Rod GD is perpendicular to the track along which G slides. Can you explain why point D traces a parabola? As a hint, use the locus definition of a parabola: the set of points equidistant from a fixed point (the focus) and a fixed line (the directrix). You should also think about the purpose served by rhombus BFGH. Note: you can clear the trace of point D by clicking on the red 'X' at the bottom right-hand corner.
Sorry, this page requires a Java-compatible web browser.
View Van Schooten's original illustration of this linkage. For a closely related construction, see The Folded Rectangle Return to Geometry in Motion

85. JANdeWITT
analytische meetkunde. Voor de verspreiding ervan is frans van Schootende Jongere (16151661) waarschijnlijk belangrijker geweest. Hij
http://www.nvvw.nl/jandewitt.htm
boekbespreking Boekbespreking door Fokko Jan Dijksterhuis A.W. Grootendorst : Jan de Witt, Elementa curvarum linearum. Liber Primus.
Tekst, vertaling, inleiding en commentaar door A.W. Grootendorst
Amsterdam, Stichting Mathematisch Centrum, 1997
287 p., prijs fl . 50, (pb) (CWI Publications), ISBN 90-6196-472-5 Latijn in de wiskundeles In 1637 publiceerde René Descartes La Géometrie en legde daarmee de grondslag voor de analytische meetkunde. Voor de verspreiding ervan is Frans van Schooten de Jongere (1615-1661) waarschijnlijk belangrijker geweest. Hij ontsloot het werk voor de hele geleerde wereld van die tijd door het in het Latijn te vertalen. Bovendien schreef hij een uitvoerig commentaar bij het moeilijk toegankelijke werk. De eerste editie van Géométria, a Renato Des Cartes publiceerde Van Schooten in 1649. Een tweede editie verscheen in twee delen in 1659 en 1661 en was nog omvangrijker. Daarin had hij bijdragen opgenomen van zijn leerlingen, waaronder Christiaan Huygens Jan Hudde en Jan de Witt . De bijdrage van Jan de Witt (1629-1672) heette Elementa curvarum linearum en bestond op haar beurt weer uit twee delen

86. Boekspreking Huygens
Het is in de 17e eeuw door de Leidse hoogleraar frans van Schootenuit het Latijn in het Nederlands vertaald en gepubliceerd. Deze
http://www.nvvw.nl/huygens.htm
boekbespreking Boekbespreking door Gerdien Visser Christiaan Huygens : Van Rekeningh in Spelen van Geluck
vertaald en toegelicht door Wim Kleijne
Epsilon uitgaven, Utrecht, 1998
59 p., fl. 12,50 - ISBN 90-5041-047-2 Het boekje 'Van Rekeningh in Spelen van Geluck' is door Epsilon uitgebracht met de uitdrukkelijke bedoeling dat het een plaats krijgt in het 'studiehuis' dat nu of volgend jaar alom in het voortgezet onderwijs realiteit gaat worden. Het boekje bevat een verhandeling van Huygens over kansspelen. Het is in de 17 e eeuw door de Leidse hoogleraar Frans van Schooten uit het Latijn in het Nederlands vertaald en gepubliceerd. Deze tekst was daarmee de eerste Nederlandstalige tekst over kansrekening en is dan ook van grote invloed geweest.
Wim Kleijne heeft in dit boekje op de rechterpagina steeds de oorspronkelijke 17 e eeuwse tekst geplaatst en deze op de linkerpagina in hedendaags Nederlands vertaald. De oorspronkelijke tekst bestaat uit een veertiental 'voorstellen', zoals Huygens dat noemt, waarin beweringen worden gedaan die vervolgens worden aangetoond. De eerste drie 'voorstellen' handelen over de vraag hoeveel mij het spelen van verschillende spellen waard is als ik weet dat mijn kansen op het winnen van een aantal verschillende geldbedragen even groot zijn. In hedendaagse kansberekeningstermen zouden wij het dan hebben over verwachtingswaarden bij een zeker kansexperiment. Het aardige is juist dat de terminologie en de benadering een heel andere is dan wij en dus ook de hedendaagse vwo-leerling gewend zijn.

87. I0107: Carel BLANKERS (Karel) (9 May 1964 - ____)
Maria van schooten. NI268 DEATH 7 Nov 1865, Amsterdam 36; REFERENCE 268. FatherSeymon van schooten Mother Aagje HASSEVELD Family 1 Harremans DIJKMAN
http://home.iae.nl/users/frankbl/d0000/g0000093.html
Carel BLANKERS (Karel)
9 May 1964 -
  • NAME : Carel BLANKERS
  • TITLE : Karel
  • BIRTH : 9 May 1964, Amsterdam
  • BAPTISM : Carolus Barromeus
  • REFERENCE
Father: Karel BLANKERS
Mother: Iet JANSEN
Family 1 Irma VAN HATTUM
  • MARRIAGE : 21 Sep 1988, `sHertogenbosch
  • REFERENCE
  • Celine BLANKERS
  • Nick BLANKERS
  • Cas BLANKERS Carel BLANKERS ... INDEX
    • DATA Date of Import: 4 feb 2002
    • DATA Date of Import: 4 feb 2002
    • DATA Date of Import: 4 feb 2002
    • DATA Date of Import: 4 feb 2002
    HTML created by GED2HTML v3.6-WIN95 (Jan 18 2000) on 10/12/02 07:29:26 PM West-Europa (standaardtijd)
    Frans J GHIJS
    • REFERENCE
    Family 1 Maria Antonetta POUW
    • REFERENCE
  • Hortens GHIJS INDEX HTML created by GED2HTML v3.6-WIN95 (Jan 18 2000) on 10/12/02 07:29:26 PM West-Europa (standaardtijd)
    Edith HESHOF
    8 Oct 1966 -
    • BIRTH : 8 Oct 1966, Roosendaal
    • REFERENCE
    Family 1 Joost COOPMANS
    • MARRIAGE : 18 Jan 1997
    • REFERENCE
  • Floor Adrienne COOPMANS
  • Josephine Edith COOPMANS INDEX HTML created by GED2HTML v3.6-WIN95 (Jan 18 2000) on 10/12/02 07:29:26 PM West-Europa (standaardtijd)
    Joanna LANSMAN
    15 Nov 1753 -
    • BIRTH : 15 Nov 1753
    • REFERENCE
    Father: Willem LANSMAN
    Mother: Petronella VAN DER GRINDT
    Family 1 Hermans DE REIJT
    • MARRIAGE : ABT. 1779, Heusden
  • 88. Reeks 110 Smits
    38. frans Alfons Smits, schrijnwerker, geb. PJ Goetschalckx in Geschiedenisvan schooten, Merxem en Sint Job in't Goor , Ekeren 1919.
    http://www.kareldegrote.nl/Reeks110_Smits.html
    Reeks 110 Smits Voor de oudere generaties wordt verwezen naar: Reeks 62 22. Joanna van Ranst, tr. Gillis Putoir van Haveskercke, amman van Antwerpen en heer van Schoten, Merksem, etc., geb. te Antwerpen 1410, overl. ald. 1478, zn. van Gielys Putoer van Haveskercke en Yesta Van Uden. 23. Thomas Butoir van Haveskercke, geb. ca. 1453, overl. tussen 1511 en 1521. 24. Thomas Putoir van Haveskercke, geb. ca. 1475, wonende te ‘s Gravenwezel, overl. voor 1541, tr. Maria Hoffstadt. 25. Gillis Puttoirs, geb. te Antwerpen ca. 1496, overl. ca. 1549, tr. Antwerpen ca. 1520 Dymphna Van den Velde. 26. Jan Putoirs, geb. te Boechout ca. 1521, tr. Lier ca. 1548 Maria Cuyts. 27. Jacob Putoirs, schepen te Wommelgem, overl. te Wommelgem 26 mei 1589. Kwam om in de kerk van Wommelgem, toen die door de geuzen in brand gestoken werd, tr. Margareta Lemmens. 28. Jan Putoirs, tr. Perijnke Jacops. 29. Peeter (d'Oude) Pittoirs, landbouwer, geb. te Wommelgem ca. 1598, overl. ald. ca. 1685, tr. ca. 1620 Elisabeth Van Nieuwendijck. 30. Maria Pittoirs, geb. te Deurne 1 april 1623, tr. Wommelgem 10 juli 1657 Petrus Gibens, geb. te Deurne 18 december 1629, zn. van Petrus Gibens en Catharina Struyven.

    89. Derivatives
    As a result of the translation of Descartes’ Geometry into Latin by Fransvan schooten (16151661) and the extensive explanations by van schooten
    http://occawlonline.pearsoned.com/bookbind/pubbooks/thomas_awl/chapter1/medialib
    History of the Derivative The derivative has two basic facets, the geometric and the computational. In addition, the applications of the derivative are manifold: the derivative plays many important roles in mathematics itself; it has uses in physics, chemistry, engineering, technology, sciences, economics, and much more, and new applications are devised every day. The origin of the derivative resides in the classical geometric tangent problems, e.g., to determine a straight line that intersects a given curve in only one given point. Euclid (ca. 300 B.C. ) proved the familiar high school geometry theorem to the effect that the line tangent to a circle at any point P is perpendicular to the radius at P Archimedes B.C. ) had a procedure for finding the tangent to his spiral. And Apollonius (ca. 262190 B.C. ) described methods, all somewhat different, for determining tangents to parabolas, ellipses, and hyperbolas. But these were just geometric problems that were studied for their own very limited interests; the ancient Greeks did not perceive any common thread or other value to these theorems. Problems of motion and velocity, also basic to our understanding of the derivative today, also originated with the ancient Greeks, although these questions were originally treated more philosophically than mathematically. The four paradoxes of Zeno (ca. 450

    90. Epsilon Uitgaven - Epsilon-Uitgaven 40: Van Rekeningh In Spelen Van Geluck
    De verhandeling van Huygens werd in 1660 gepubliceerd door de wiskundigeFrans van schooten die het opnam in een van zijn boeken.
    http://www.epsilon-uitgaven.nl/E40.php

    home
    nieuws zoeken
    catalogus
    ...
    links

    Van Rekeningh in Spelen van Geluck
    Auteur Christiaan Huygens Onderwerpen
    Kansrekening en Statistiek, Geschiedenis van de Wiskunde Bedoeld voor Algemeen wetenschappelijk geïnteresseerden, leerlingen VWO. Uitgave 1e druk 1998. ISBN 64 pagina's Prijs
    Inhoud
    In de 17e eeuw vroege dobbelende en kaartspelende lieden zich af of er enige wetmatigheid te vinden was in deze "spelen van geluck". Zowel door Christiaan Huygens als door de franse filosoof en wiskundige Blaise Pascal zijn naar aanleiding van zulke vragen verhandelingen geschreven die geleid hebben tot het eerste ontstaan van de theorie van kansrekening en statistiek.
    De verhandeling van Huygens werd in 1660 gepubliceerd door de wiskundige Frans van Schooten die het opnam in een van zijn boeken. Dat was toen de eerste tekst die in het Nederlands verscheen over kansrekening en een van de eerste in de geschiedenis; de verhandeling heeft dan ook grote invloed gehad.
    In deze nieuwe uitgave is naast het origineel de tekst in hedendaags Nederlands weergegeven. Behalve de noten zijn een aantal vragen en opgaven toegevoegd die de tekst mede geschikt maken als keuzeonderwerp voor zelfstandige bestudering in het VWO.
    Auteur Christiaan Huygens (1629-1695), zoon van de bekende dichter en diplomaat Constantijn Huygens, werd in de tweede helft van de 17e eeuw beschouwd als Europa's grootste wiskundige en natuurwetenschapper. Hij is ongetwijfeld één van de geniaalste onderzoekers die Nederland heeft voortgebracht. Huygens heeft vele theorieën, ontdekkingen en vondsten op zijn naam staan, zoals de ringen van Saturnus en de slingerklok.

    91. Deelnemerslijst
    Victor. CREM. de Man. frans. Stichting Retour. de Rooij. RossAnn. NHTV studente. REISbeWIJS.Drissen. Eric. RIVM. Duim, van der. Rene. Wageningen Universiteit. Duineveld.
    http://www.idut.nl/deelnemerslijst.htm
    Achternaam voornaam Organisatie Amelung Bas ICIS, Universiteit Maastricht Autar Shailendra Hogeschool Notenboom Azemenkie Michael Yimnai Student NHTV Bakker Hans Travel Unie Nederland Bautveld Edgar Hogeschool Delft Beekhoven Jasper Hogeschool Delft Bergeijk Els Hogeschool Delft Bergen Presley NHTV Beunders Niek nhtv Biesheuvel Delphine Fontys Hogescholen Blekkenhorst Tom Hogeschool Notenboom Bloem Tineke ROC Landstede Bloemheuvel Sander Saxion Hogeschool IJsselland Blom Sjoukje ProChile Holland Boef Debora Hogeschool Notenboom Boekhold Harro Stichting Recreatie KIC Bonnerjee Rutger Hogeschool Notenboom Boonen Danielle eceat Bosboom Lisette Hogeschool Notenboom Bosschers Linda Saxion Hogeschool IJsselland Brand Dick Ministerie van VROM Brink Suzanne TU Delft - OCP - DfS Broer Wijnand Milieuadviesbureau CREM Brouwer Evelien Saxion Hogeschool IJsselland Buitenhuis R.N. Vakschool Wageningen Burggraaf Thea Saxion Hogeschool IJselland Caalders Janine Bureau BUITEN Cijntje Ninoshka Hogeschool Delft Evelien Scriptie NHTV, Nederlandse Ski Vereniging Cruijs Tjako NHTV de Boer Irene WICE de Boer Sharon Hogeschool Notenboom de Haan ir. Alexander R.C.

    92. Het Politiekdebat.nl Forums - Members List
    852, bas van schooten, Noordwijk, Mar 28, 2002, 19, Email bas vanschooten, Visit bas van schooten's Web Site, MSNM jeugbond@hotmail.com.
    http://www.karreman.net/pf/bb_memberlist.php?&start=800&sortby=from

    93. Quantum And Cosmos II
    The new algebra and analytical geometry of Viète was read by Newton from Fransvan schooten's edition of Viète's collected works published in 1646.
    http://www.kurdmedia.com/eim/hamid/scientist/isaac newton.htm
    Sir Isaac Newton
    Born: 4 Jan 1643 in Woolsthorpe, Lincolnshire, England
    Died: 31 March 1727 in London, England
    Isaac Newton's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 was the highly productive period in which he was Lucasian professor at Cambridge. The third period (nearly as long as the other two combined) saw Newton as a highly paid government official in London with little further interest in mathematical research.
    Isaac Newton was born in the manor house of Woolsthorpe, near Grantham in Lincolnshire. Although by the calendar in use at the time of his birth he was born on Christmas Day 1642, we give the date of 4 January 1643 in this biography which is the "corrected" Gregorian calendar date bringing it into line with our present calendar. (The Gregorian calendar was not adopted in England until 1752.) Isaac Newton came from a family of farmers but never knew his father, also named Isaac Newton, who died in October 1642, three months before his son was born. Although Isaac's father owned property and animals which made him quite a wealthy man, he was completely uneducated and could not sign his own name.
    You can see a picture of Woolsthorpe Manor as it is now.

    94. Girolamo Cardan
    Tutor to Huygens, schooten of Dutch descent published a treatise entitled Franciscia schooten Exercitationum Mathematicarum Libri quinque, which included
    http://www.math.utsa.edu/~leung/probabilityandstatistics/chronology.htm
    Chronology of Probabilists and Statisticians
    Girolamo Cardan
    Cardan , was a renowned Italian medical doctor and instructor in Mathematics. He wrote a treatise entitled DeLudo Aleae (Book on Games of Chance) (1550), which was not published until 1663. In this treatise, Cardan, who was also an avid gambler, presented some ideas of basic probability applied to games of chance using dice. This is the first historical record of probability theory. Some of his other mathematical contributions were Ars Magna (Great Art) on Algebra, which gave solutions to the cubic and quartic equations and Practica arithmetica et mensurandi singularis (Practice of Mathematics and Individual Measurements) (1539).
    Johannes Kepler
    Kepler , an astronomer born in Germany, published a work entitled De Stella Nova in pede Serpentarii In this work, Kepler addressed the appearance of a new star, a supernova, and also results of tosses of dice. Kepler's major scientific contributions were in astronomy and optics. He discovered three major laws of planetary motion, he provided an explanation of the mechanics of vision, discovered how light works in a telescope, found new geometric figures, and more. The entirety of his works can be found in Gesammelte Werke and in Johannis Kepleri Astronomi Opera Omnia . Kepler suffered many hardships in his life, including the death of one wife, at least six children, and his mother being tried for witchcraft, a trial lasting from 1615-1621 when she was finally exonerated.

    95. Newton
    The new algebra and analytical geometry of Viète was read by Newton from Fransvan schooten's edition of Viète's collected works published in 1646.
    http://morgan.rutgers.edu/WSSP98/Redbank/Newtontext.htm
    Sir Isaac Newton
    Born: 4 Jan 1643 in Woolsthorpe, Lincolnshire, England
    Died: 31 March 1727 in London, England
    Click the picture above
    to see twenty larger pictures Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
    Isaac Newton 's life can be divided into three quite distinct periods. The first is his boyhood days from 1643 up to his appointment to a chair in 1669. The second period from 1669 to 1687 was the highly productive period in which he was Lucasian professor at Cambridge. The third period (nearly as long as the other two combined) saw Newton as a highly paid government official in London with little further interest in mathematical research. Isaac Newton was born in the manor house of Woolsthorpe, near Grantham in Lincolnshire. Although by the calendar in use at the time of his birth he was born on Christmas Day 1642, we give the date of 4 January 1643 in this biography which is the "corrected" Gregorian calendar date bringing it into line with our present calendar. (The Gregorian calendar was not adopted in England until 1752.) Isaac Newton came from a family of farmers but never knew his father, also named Isaac Newton, who died in October 1642, three months before his son was born. Although Isaac's father owned property and animals which made him quite a wealthy man, he was completely uneducated and could not sign his own name. You can see a picture of Woolsthorpe Manor as it is now.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 5     81-95 of 95    Back | 1  | 2  | 3  | 4  | 5 

    free hit counter