Geometry.Net - the online learning center
Home  - Scientists - Von Koch Helge

e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 96    1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Von Koch Helge:     more detail
  1. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control: v. 2 by Helge Von Koch, Gregory Ljungberg, 1961-12
  2. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control, Vol. 2 (Proceedings Fifth International Instruments & Measurements Conference, Sep 1960, Stockholm, Sweden) by Helge; Ljungberg, Gregory; Reio, Vera (editors) von Koch, 1961-01-01
  3. Föreläsningar Öfver Teorin För Transformationsgrupper (Swedish Edition) by Helge Von Koch, 2010-01-09
  4. Instruments and Measurements: Chemical Analysis, Electric Quantities, Nucleonics and Process Control, Vol. 1 (Proceedings Fifth International Instruments & Measurements Conference, Sep 1960, Stockholm, Sweden) by Helge; Ljungberg, Gregory; Reio, Vera (editors) von Koch, 1961-01-01
  5. Mathématicien Suédois: Ivar Fredholm, Albert Victor Bäcklund, Waloddi Weibull, Gösta Mittag-Leffler, Helge Von Koch, Johan Håstad (French Edition)
  6. Instruments & Measurements 2vol by Helge Von Koch, 1961

1. HELGE VON KOCH
Helge von Koch captured the idea of an infinite length surroundinga finite area with his socalled Koch curve. This is created
http://www.bath.ac.uk/~ma1ejm/koch.html
Helge von Koch captured the idea of an infinite length surrounding a finite area with his so-called Koch curve . This is created by beginning with an equilateral triangle and adding another equilateral triangle to the middle third of each side. This bifurcation rule can be applied infinitely many times in principle, and the result is as shown: A magnification of the Koch curve will look exactly the same as the original and this property is known as self-similiarity The Koch curve can be classified as fractal because it cannot be visualised in integer dimensions: it is 'rougher' than a smooth curve or line (which has 1 dimension) so is better at 'taking up space', but is not as good at filling up space as a square (which has 2 dimensions) since it doesn't really have any area. The Koch curve is said to have a fractal dimension of around 1.2618. However, fractals are not just an abstract construction - they are also found in real-world systems such as blood vessels, the internal structure of the lungs, graphs of stock market data, and so on. Nowadays, using computer programming, mathematicians can produce very realistic images of extremely complicated structures. Patterns in nature from bacteria and fern growth, to clouds and mountains can now be created by using simple formulas which are very close to repeating themselves but never actually do. MITCHELL FEIGENBAUM
BACK TO CHAOS THEORY

EDWARD LORENZ

BENOIT MANDELBROT

2. Koch
Translate this page von koch helge suédois, 1870-1924 Ce mathématicien suèdois est lepremier, en 1904, à exhiber à l’étonnement général, une
http://www.sciences-en-ligne.com/momo/chronomath/chrono1/Koch.html
Von KOCH Helge
Cantor et Dedekind flocon de neige est, comme celle de Peano Hilbert , une courbe fractale Mandelbrot

  • sur chaque côté, construisez, "au milieu" et à l'extérieur, le triangle équilatéral de côté a/3 et supprimez la base; Réitérer cette construction sur chaque côté des triangles ainsi formés;
n Programmation du flocon : Pour en savoir plus :
  • Penser les mathématiques
    Des monstres de Cantor et de Peano à la géométrie fractale de la nature
Cartant Elie Borel

3. Mandelbrot And Koch
magnified more. Helge von koch helge von Koch, captured this ideain a mathematical construction called the Koch curve. To create
http://students.bath.ac.uk/ns1cb/mandelbrot.html
Mendelbrot
Benoit Mandelbrot was a mathematician studying this self-similarity. One of the areas he was studying was
cotton price fluctuation. He noticed the numbers that produced aberrations from the point of view of normal
distribution produced symmetry from the point of view of scaling. Each particular price change was
random and unpredictable. But the sequence of changes was independent on scale: curves for daily price
changes and monthly price changes matched perfectly. Incredibly, analysed Mandelbrot's way, the degree
of variation had remained constant over a tumultuous sixty-year period that saw two World Wars and a
depression
Mandelbrot analysed not only cotton prices, but many other phenomena as well. At one point, he was
wondering about the length of a coastline. A map of a coastline will show many bays. However, measuring
the length of a coastline off a map will miss minor bays that were too small to show on the map. Likewise, walking along the coastline misses microscopic bays in between grains of sand. No matter how much a coastline is magnified, there will be more bays visible if it is magnified more.

4. Helge Von Koch
Lite fakta om helge von koch. helge von koch var en svensk matematiker som levde år 18701924.
http://fy.chalmers.se/tp/F1projekt/1999/FractPict/koch.html
Lite fakta om Helge von Koch.
Helge von Koch var en svensk matematiker som levde år 1870-1924.
Vid den ringa åldern av 22 år disputerade von Koch år 1892. Drygt 10 år senare blev han professor vid Kungliga Tekniska Högskolan i Stockholm. Där arbetade han som professor år 1905 till år 1911, då han istället blev professor vid Stockholms högskola.
Helge von Koch har givit namn åt den så kallade von Kochs kurva, samt von Kochs snöflinga.
Även Helges syskon är väl kända. Helge är bror till Sigurd och Gerard Halfred (G.H.) von Koch. Se hur Helge von Koch såg ut.

5. Les Fractales - Le Flocon De Von Koch
Le flocon de von koch Le flocon de von koch a été imaginé par le mathématicien allemand helge von koch en 1904.
http://pedagogie.ac-aix-marseille.fr/etablis/lycees/craponne/fractale/vonkoch.ht

6. Koch
Niels Fabian helge von koch. helge von koch's father was Richert Vogt von koch,who had a military career, and his mother was Agathe Henriette Wrede.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Koch.html
Niels Fabian Helge von Koch
Born: 25 Jan 1870 in Stockholm, Sweden
Died: 11 March 1924 in Danderyd, Stockholm, Sweden
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Helge von Koch 's father was Richert Vogt von Koch, who had a military career, and his mother was Agathe Henriette Wrede. Von Koch attended a good school in Stockholm, completing his studies there in 1887. He then entered Stockholm University. Stockholm University was the third university in Sweden and it was planned from 1865, opening in 1880 with Mittag-Leffler Von Koch spent some time at Uppsala University from 1888. He was a student of Mittag-Leffler at Stockholm University. Von Koch's first results were on infinitely many linear equations in infinitely many unknowns. In 1891 he wrote the first of two papers on applications of infinite determinants to solving systems of differential equations with analytic coefficients. The methods he used were based on those published by about six years earlier. The second of von Koch's papers was published in 1892, the year in which von Koch was awarded a doctorate for his thesis which contained the results of the two papers. Von Koch was awarded a doctorate in mathematics by Stockholm University on 26 May 1892. Garding writes in [2] that his doctoral thesis was:-

7. Koch
Biography of helge von koch (18701924) Niels Fabian helge von koch. Born 25 Jan 1870 in Stockholm, Sweden
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Koch.html
Niels Fabian Helge von Koch
Born: 25 Jan 1870 in Stockholm, Sweden
Died: 11 March 1924 in Danderyd, Stockholm, Sweden
Click the picture above
to see a larger version Show birthplace location Previous (Chronologically) Next Biographies Index Previous (Alphabetically) Next Main index
Helge von Koch 's father was Richert Vogt von Koch, who had a military career, and his mother was Agathe Henriette Wrede. Von Koch attended a good school in Stockholm, completing his studies there in 1887. He then entered Stockholm University. Stockholm University was the third university in Sweden and it was planned from 1865, opening in 1880 with Mittag-Leffler Von Koch spent some time at Uppsala University from 1888. He was a student of Mittag-Leffler at Stockholm University. Von Koch's first results were on infinitely many linear equations in infinitely many unknowns. In 1891 he wrote the first of two papers on applications of infinite determinants to solving systems of differential equations with analytic coefficients. The methods he used were based on those published by about six years earlier. The second of von Koch's papers was published in 1892, the year in which von Koch was awarded a doctorate for his thesis which contained the results of the two papers. Von Koch was awarded a doctorate in mathematics by Stockholm University on 26 May 1892. Garding writes in [2] that his doctoral thesis was:-

8. Poster Of Koch
helge von koch. lived from 1870 to 1924. koch is best known for thefractal koch curve. Find out more at http//wwwhistory.mcs.st
http://www-gap.dcs.st-and.ac.uk/~history/Posters2/Koch.html
Helge von Koch lived from 1870 to 1924 Koch is best known for the fractal Koch curve. Find out more at
http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Koch.html

9. [HM] Helge Von Koch's Fractalistic Snowflake Curve
HM helge von koch's fractalistic snowflake curve
http://mathforum.com/epigone/historia_matematica/shouzerdgleld
a topic from Historia-Matematica Discussion Group
[HM] Helge von Koch's fractalistic snowflake curve
post a message on this topic
post a message on a new topic

10 Mar 2001 [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
10 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Julio Gonzalez Cabillon
10 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Michael Fried
12 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Daniel J. Curtin
12 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Avinoam Mann
13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Daniel J. Curtin
13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by David Masunaga 14 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by John Fauvel 15 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Dave L. Renfro

10. Eliana Argenti E Tommaso Bientinesi - Caos E Oggetti Frattali -biografia Di Niel
Translate this page Niels Fabian helge von koch. Nato 25 Gennaio 1870 a Stoccolma, SveziaMorto 11 Marzo 1924 a Danderyd, Stoccolma, Svezia. Figlio
http://www.webfract.it/FRATTALI/nkoch.htm
Pagina iniziale Introduzione
Che cosa sono i frattali?

Come si realizzano i frattali?
...
Area Download

CARATTERISTICHE Autosimilarità
Perimetro infinito e area finita

Dimensione non intera

Struttura complessa a tutte le scale di riproduzione
...
Dinamica caotica
PERSONAGGI Niels Fabian Helge von Koch
Waclaw Sierpinski

Gaston Maurice Julia
Benoit Mandelbrot TIPI DI FRATTALI Curva di von Kock Triangolo di Sierpinski Tappeto di Sierpinski Insieme di Mandelbrot ... Nuvole frattali FRATTALI E REALTA' ...fisiologia umana ...arte ...musica ...altri campi ... Bibliografia e indirizzi utili
Niels Fabian Helge von Koch
Nato: 25 Gennaio 1870 a Stoccolma, Svezia Morto: 11 Marzo 1924 a Danderyd, Stoccolma, Svezia Von Koch , pubblicato nel 1906.
  • Si divide un segmento in tre parti uguali.
  • Si sostituisce il segmento centrale con altri due segmenti in modo da formare un triangolo equilatero privo della base.
  • Si ripete il procedimento indefinitamente.
  • 11. Caos E Oggetti Frattali -Indice - Di Eliana Argenti E Tommaso Bientinesi -
    Translate this page CHIUDI Vita e opere di Niels Fabian helge von koch Giuseppe PeanoWaclaw Sierpinski Gaston Maurice Julia Benoit Mandelbrot CHIUDI
    http://www.webfract.it/FRATTALI/indice0.htm
    INDICE
    Pagina iniziale Contattaci Introduzione
    Che cosa sono i frattali?

    Come si realizzano i frattali?
    ...
    Frattali L-System
    Le caratteristiche di un frattale Autosimilarità
    Perimetro infinito e area finita

    Dimensione non intera

    Struttura complessa a tutte le scale di riproduzione
    ...
    Dinamica caotica

    Personaggi
    Vita ed opere di:
    Niels Fabian Helge von Koch
    Giuseppe Peano Waclaw Sierpinski Gaston Maurice Julia ... Benoit Mandelbrot Tipi di frattali Curva di von Koch Anti-fiocco di neve Quadratic Koch Triangolo di Sierpinski Sierpinski: tappeto e tappeto con tecnica l-system Frattale di Peano Frattale di Hilbert Frattale di Gosper ... Alberi frattali Alberi frattali con tecnica l-system Curva logistica Nuvole frattali Frattali e realtà I frattali in... fisiologia umana arte musica altri campi ... www.webfract.it di Eliana Argenti e Tommaso Bientinesi

    12. Re: [HM] Helge Von Koch's Fractalistic Snowflake Curve By Udai Venedem
    Re HM helge von koch's fractalistic snowflake curve by Udai Venedem
    http://mathforum.com/epigone/historia_matematica/shouzerdgleld/B6D48DAE.E0F%25ve
    Re: [HM] Helge von Koch's fractalistic snowflake curve by Udai Venedem
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to Historia-Matematica Discussion Group
    Subject: Re: [HM] Helge von Koch's fractalistic snowflake curve Author: venedem@wanadoo.fr Date: http://perso.wanadoo.fr/alta.mathematica/ The Math Forum

    13. De Kromme Van Helge Von Koch (1904)
    De Kromme van helge von koch (1904) Een lijnstuk wordt in drie gelijkestukken verdeeld. Het middelste stuk wordt weggelaten en
    http://home.planet.nl/~Philip.van.Egmond/wiskunde/koch1-n.htm
    De Kromme van Helge von Koch (1904)
    Een lijnstuk wordt in drie gelijke stukken verdeeld.
    Het middelste stuk wordt weggelaten en er worden twee even grote lijnstukken toegevoegd.
    Zo ontstaat de tekening hieronder.
    In het midden is een gelijkzijdige driehoek ontstaan, waarvan de basis ontbreekt.
    Dan krijg je de tekening, hieronder.
    Na nog een keer hetzelfde principe toepassen, krijg je:
    Ik heb dat 100 keer gedaan en dan krijg je het volgende plaatje:
    Veronderstel dat de lengte van het eerste lijnstuk 1 dm (=10 cm)is. Dan wordt de lengte van elk van de lijnstukken in de tweede tekening 1/3 dm.
    De totale lengte van die 4 lijnstukken 4*1/3= 4/3 dm. In de derde tekening zijn er al 16 lijnstukken getekend. Elke keer wordt zo'n lijnstukje 3 keer zo klein, maar je krijgt wel 4 keer zoveel lijnstukken. De totale lengte wordt dus elke keer 4/3 keer zo groot.
    De totale lengte van de 16 lijnstukken is dus (4/3) ~ 1,78 dm.

    14. Helge Von Koch
    Shelby Turcotte December 6, 2001 College Math Report helge von koch Niels Fabian helge von koch was born to Richert Vogt von koch and Agathe Henriette Wrede on January 25, 1870.
    http://www2.thomas.edu/students/t/turcottesh/Helge%20Von%20Koch.doc
    <       $‡ RÙ^6 æÞ <K – – – Þ æ <  ï]³Û~ÁÂô ¬  a 0‘ ¬ 7 v7¬ úúææææ¬ 7æÀ P <ô0®– ÞŒjt <¿óû?äŸüM¿êþºÇÿ¡­X  ÿg—þgü“ÿ‰£ìòÿÏìÿ’ñ5bŠ¯öyçöÉ?øš>Ï/üþÏù'ÿV(  ÿg—þgü“ÿ‰£ìòÿÏìÿ’ñ5bŠ¯öyçöÉ?øš>Ï/üþÏù'ÿV(  ÿg—þgü“ÿ‰£ìòÿÏìÿ’ñ5bŠ¯öyçöÉ?øš>Ï/üþÏù'ÿUõ½OûGžõaóæ]±Áí¾tÎÁ#vÝÎÊ»9 Ù¦êo¿°—c¹P¦h›˜¥ÀÆr¿+ù‰(Q…  ³Ëÿ?³þIÿÄÑöyçöÉ?øš±EWû <¿óû?äŸüMg—þgü“ÿ‰«P³Ëÿ?³þIÿÄÑöyçöÉ?øš±EWû <¿óû?äŸüMg—þgü“ÿ‰«P³Ëÿ?³þIÿÄÑöyçöÉ?øš±EWû Ä¼´ðݤw7÷Kä•i6£”±8 ΐFÏ,Ux-Œñ@®©ámSÀ¶w^+Ó <ëËId´žp ,ï2 ¿/̀ÅW;²¹QEQEQEQEeø‡[‡@ѧ¾“ËyȅäùÒ,qáF’Ç…PÌØU$S½ÿ‰çˆWLûÚ~åÝ]‘üwÕàpþîß1—ƒÌ=U˜‚³ôm3û+NHd›í7o‰.îÊík™°HFN3€ç ¡TaT¡@Q@Q@W²ÿPßõÖOý ªÅW²ÿPßõÖOý ¨ÅQ@sÞ'ð–“âû8,õt™¢‚a <+¢ÚÙÞêRÚ]E5Õµ¼$¨ <Ý[ËoqsA*’92º‘‚ œŸó֏¥y>§âë߈úî“á¿‹Øš3ø¾˜@m¤ãnӒ  öÚ=k³Ðt‹ëßÚé0‚ ›““tžaq å,xË`OëÞº8âŠæ(Õ±vÚ1¸ô$ã½?ן¯ùÿ=è”ñŽ—«Çày´Z[E3 ¶DÞ"BFÖØznÆôëéY^Ön4™í

    15. The Curve Of Helge Von Koch (1904)
    The curve of helge von koch (1904) A line is divided into three equal sections. Thecentral one is removed, and two lines of equal length are put in its place.
    http://home.planet.nl/~Philip.van.Egmond/wiskunde/koch1-e.htm
    The curve of Helge von Koch (1904)
    A line is divided into three equal sections. The central one is removed, and two lines of equal length are put in its place. In this way the figure below is generated.
    In the center is now an equilateral triangle, with its lowest side removed. What would happen if you were to divide every line into three pieces, remove the central piece, and replace it with two other ones of equal length just like was done with the first line? You would see the situation below.
    If one did the same again:
    After 100 iterations I had the following picture:
    Now suppose that the length op the first line was 1 dm (=10cm). Then the length of the segments in the second picture would be 1/3 dm. The total length of the segments would be 4*1/3 dm=4/3dm. After the second iteration there are already 16 segments in the curve. With each iteration a segment gets 3 times as small, but 4 times as many segments are created. The total length of the 16 segments is therefore (4/3) ~ 1,78 dm.

    16. De Kromme Van Helge Von Koch (1904)
    De Kromme van helge von koch (1904) Een lijnstuk wordt in drie gelijke stukken verdeeld. Het middelste stuk wordt weggelaten en er worden twee even grote lijnstukken toegevoegd. Zo ontstaat de tekening hieronder.
    http://home.wxs.nl/~Philip.van.Egmond/wiskunde/koch1-n.htm
    De Kromme van Helge von Koch (1904)
    Een lijnstuk wordt in drie gelijke stukken verdeeld.
    Het middelste stuk wordt weggelaten en er worden twee even grote lijnstukken toegevoegd.
    Zo ontstaat de tekening hieronder.
    In het midden is een gelijkzijdige driehoek ontstaan, waarvan de basis ontbreekt.
    Dan krijg je de tekening, hieronder.
    Na nog een keer hetzelfde principe toepassen, krijg je:
    Ik heb dat 100 keer gedaan en dan krijg je het volgende plaatje:
    Veronderstel dat de lengte van het eerste lijnstuk 1 dm (=10 cm)is. Dan wordt de lengte van elk van de lijnstukken in de tweede tekening 1/3 dm.
    De totale lengte van die 4 lijnstukken 4*1/3= 4/3 dm. In de derde tekening zijn er al 16 lijnstukken getekend. Elke keer wordt zo'n lijnstukje 3 keer zo klein, maar je krijgt wel 4 keer zoveel lijnstukken. De totale lengte wordt dus elke keer 4/3 keer zo groot.
    De totale lengte van de 16 lijnstukken is dus (4/3) ~ 1,78 dm.

    17. Efg's Fractals And Chaos -- Von Koch Curve Lab Report
    efg's Computer Lab Fractals and Chaos von koch Curve Report Neils Fabian helge von koch's "Snowflake"
    http://www.efg2.com/Lab/FractalsAndChaos/vonKochCurve.htm
    Fractals and Chaos von Koch Curve Lab Report Neils Fabian Helge von Koch's "Snowflake" Purpose
    The purpose of this project is to show how to create a von Koch curve, including a von Koch snowflake. Mathematical Background Swedish mathematician Helge von Koch introduced the "Koch curve" in 1904. Starting with a line segment, recursively replace the line segment as shown below: The single line segment in Step 0, is broken into four equal-length segments in Step 1. This same "rule" is applied an infinite number of times resulting in a figure with an infinite perimeter. Here are the next few steps: If the original line segment had length L, then after the first step each line segment has a length L/3. For the second step, each segment has a length L/3 , and so on. After the first step, the total length is 4L/3. After the second step, the total length is 4 L/3 , and after the k th step, the length is 4 k L/3 k . After each step the length of the curve grows by a factor of 4/3. When repeated an infinite number of times, the perimeter becomes infinite. For a more detailed explanation of the length computation, see [ , p. 107] or

    18. [HM] Helge Von Koch's Fractalistic Snowflake Curve
    a topic from HistoriaMatematica Discussion Group HM helge von koch's fractalisticsnowflake curve. post a message on this topic post a message on a new topic
    http://mathforum.org/epigone/historia_matematica/shouzerdgleld
    a topic from Historia-Matematica Discussion Group
    [HM] Helge von Koch's fractalistic snowflake curve
    post a message on this topic
    post a message on a new topic

    10 Mar 2001 [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
    10 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Julio Gonzalez Cabillon
    10 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Michael Fried
    12 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Daniel J. Curtin
    12 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
    13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Avinoam Mann
    13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Udai Venedem
    13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Daniel J. Curtin
    13 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by David Masunaga 14 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by John Fauvel 15 Mar 2001 Re: [HM] Helge von Koch's fractalistic snowflake curve , by Dave L. Renfro

    19. Re: [HM] Helge Von Koch's Fractalistic Snowflake Curve By Daniel J. Curtin
    Re HM helge von koch's fractalistic snowflake curve by Daniel J.Curtin. reply to this message post a message on a new topic Back
    http://mathforum.org/epigone/historia_matematica/shouzerdgleld/p05001900b6d28dd8
    Re: [HM] Helge von Koch's fractalistic snowflake curve by Daniel J. Curtin
    reply to this message
    post a message on a new topic

    Back to messages on this topic
    Back to Historia-Matematica Discussion Group
    Subject: Re: [HM] Helge von Koch's fractalistic snowflake curve Author: curtin@NKU.EDU Date: Mon, 12 Mar 2001 10:09:57 -0500 Dear HM, The ORESME reading group, http://www.nku.edu/~curtin/oresme.html , read these papers in 1998. There are links to translations and to scans of the four pages of additional material in the later paper on this web page. Here is an extract from our site about the texts: The paper "Sur une courbe continue sans tangente obtenue par une construction g/eome/trique e/le/mentaire,", Archiv for Matematik, Astronomi och Fysik, 1 (1904) 681-702, (trans. by Ilan Vardi in "Classics on Fractals," Gerald Edgar, ed.), in which Helge von Koch presented the Koch Snowflake, was the topic of the meeting. This material is reprinted, with some additions, in "Une me/thode ge/ome/trique e/le/mentaire pour l'e/tude de certaines questiones de la the/orie des courbes planes," Acta Mathematica, 30 (1906), 145-174. Cheers Dan Daniel J. Curtin Associate Professor Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 USA Phone (859) 572-6348 Fax (859) 572-6097 curtin@nku.edu http://www.nku.edu/~curtin/

    20. Helge Von Koch
    Födelseland Sverige Födelseår 1870 Död år 1924. helge von kochföddes i Sverige år 1870. Var helge von koch dog år 1924. Tillbaka
    http://w1.371.telia.com/~u37103753/Scientists/Koch.html
    Födelseland: Sverige Födelseår: 1870 Död år: 1924 Helge von Koch föddes i Sverige år 1870. Var student till Gösta Mittag-Leffler och disputerade redan vid 22 års ålder med en avhandling som kombinerade teorin för differentialekvationer med analytiska koefficienter med teorin för oändliga determinanter. Han är känd främst för Kochkurvan inom fraktalteorin. Han blev professor vid KTH år 1905 och efterträdde Gösta Mittag-Leffler som professor vid Stockholms högskola år 1911 men var sjuk ofta vilket ledde till att Marcel Riesz övertog hans tjänst. Helge von Koch dog år 1924.

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 1     1-20 of 96    1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter