Geometry.Net - the online learning center
Home  - Theorems_And_Conjectures - Fermat Theorem

e99.com Bookstore
  
Images 
Newsgroups
Page 1     1-20 of 101    1  | 2  | 3  | 4  | 5  | 6  | Next 20

         Fermat Theorem:     more books (100)
  1. Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem by Amir D. Azcel, Amir D. Aczel, 2007-10-12
  2. Fermat's Last Theorem for Amateurs by Paulo Ribenboim, 1999-02-11
  3. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem by Simon Singh, 1998-09-08
  4. Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory (Graduate Texts in Mathematics) by Harold M. Edwards, 2000-01-14
  5. Modular Forms and Fermat's Last Theorem (Volume 0)
  6. Algebraic Number Theory and Fermat's Last Theorem: Third Edition by Ian Stewart, David Tall, 2001-12-01
  7. Invitation to the Mathematics of Fermat-Wiles by Yves Hellegouarch, 2001-10-17
  8. The World's Most Famous Math Problem: The Proof of Fermat's Last Theorem and Other Mathematical Mysteries by Marilyn vos Savant, 1993-10-15
  9. Notes on Fermat's Last Theorem by Alfred J. van der Poorten, 1996-02-02
  10. Elliptic Curves, Modular Forms and Fermat's Last Theorem, 2nd Edition by various, 1998-01-01
  11. Number Theory Related to Fermat's Last Theorem (Progress in Mathematics) by Neal Koblitz, 1983-04
  12. Fermat's Last Theorem by Ran Van Vo, 2002-03
  13. Seminar on Fermat's Last Theorem: 1993-1994 The Fields Institute for Research in Mathematical Sciences Toronto, Ontario, Canada (Conference Proceedings (Canadian Mathematical Society))
  14. Fermat's Last Theorem Proved: Award Offered for Refutation by Shafi U. Ahmed, 1990-03-15

1. Planet Lingerie - Name Brands At Discount Prices!
An attempted elementary proof.
http://www.geocities.com/vala_var/
PLANET LINGERIE off your favorite name brands everyday!
The most exciting place to shop for name brand lingerie!
YOUR ULTIMATE PLACE TO SHOP AND SAVE! CONTACT US ANY TIME: FAX Email: Sales@PlanetLingerie.com Sign Up For Email Updates

2. Fermat's Last Theorem -- From MathWorld
Article in Eric Weisstein's World of Mathematics.Category Science Math Diophantine Equations Fermat s Last Theorem......Fermat's Last Theorem, Bell, E. T. The Last Problem. New York Simon and Schuster,1961. Cipra, B. A. fermat theorem Proved. Science 239, 1373, 1988.
http://mathworld.wolfram.com/FermatsLastTheorem.html

Foundations of Mathematics
Mathematical Problems Prize Problems Foundations of Mathematics ... Diophantine Equations
Fermat's Last Theorem

A theorem first proposed by Fermat in the form of a note scribbled in the margin of his copy of the ancient Greek text Arithmetica by Diophantus The scribbled note was discovered posthumously, and the original is now lost. However, a copy was preserved in a book published by Fermat's son. In the note, Fermat claimed to have discovered a proof that the Diophantine equation has no integer solutions for n The full text of Fermat's statement, written in Latin, reads "Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet" (Nagell 1951, p. 252). In translation, "It is impossible for a cube to be the sum of two cubes, a fourth power to be the sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly marvelous demonstration of this proposition that this margin is too narrow to contain." As a result of Fermat's marginal note, the proposition that the

3. Little Fermat Theorem
Little fermat theorem. (2)(2 10 ) n 1 is divisible by 341. X (p-1) - Y (p-1)= 0 mod(p) is another interesting fact proven by the Little fermat theorem.
http://home.earthlink.net/~usondermann/little.html
Little Fermat Theorem
The Little Fermat Theorem states that if p is a prime then p divides a p -a, p not equal to a. After factoring : a(a (p-1)
The converse of the theorem is not true, in fact there are composite numbers that divide a p -a. They are referred to as psuedoprimes The Fermat numbers denoted by: F n are always primes or psuedoprimes when a=2.
n +1 is the suspected prime to be tested.
Let a = 2 then: 2 n -2, or 2[2 n -1] is divisible by 2 n
Let f = 2 n , This is a number that only has 2 as its factor.
That leaves us with the expression 2 f -1 to factor.
Using the fact that x -y factors to (x+y)(x-y)
then 2 f -1 factors to (2 (f / 2) (f / 2)
Factoring the -1 factor repeatedly until the exponent is 1 we get:
f -1 factors to (2 (f / 2) (f / 4) (f / 8) (f / 16) n
Example: +1 is F , or 2 +1 and 2 Substituting all values in the original expression we get 2(2 -1) is divisible by Factoring: 2 Fermat , the father of number theory, conjectured that all 2 n +1 were prime. the first four are but 2 +1 is composite. Euler proved that this number is divisible by 641. (more on all of this later) I have played with this expression trying to find a pattern to psuedoprimes . I have found that if a has the pattern of kp+1 or (kp+1) t then any number p divides the expression: a n -a.

4. Little Fermat Theorem
(X (p1) -1) - (Y (p-1) -1) = m, Associate and factor a (-1). p(t) - p(u) = m,Factor p via Little fermat theorem. p(tu) = pk, Substituting m=pk and Factoringp.
http://home.earthlink.net/~usondermann/little2.html
X (p-1) - Y (p-1) = mod(p)
X (p-1) - Y (p-1) = m X and Y not equal to p, a prime X (p-1) (-1) - Y (p-1) (+1) =m Subtract and Add a 1 (X (p-1) -1) - (Y (p-1) -1) = m Associate and factor a (-1) p(t) - p(u) = m Factor p via Little Fermat Theorem p(t-u) = pk Substituting m=pk and Factoring p X (p-1) - Y (p-1) = mod(p) Substituting and applying mod

5. The Last Fermat Theorem
The Last fermat theorem. The following paragraphs contain a shortoutlook on the Last fermat theorem with regards to Gsystems.
http://www.sweb.cz/vladimir_ladma/english/music/articles/links/gferm.htm
The Last Fermat theorem
The following paragraphs contain a short outlook on the Last Fermat theorem with regards to G-systems.
Instances in segments
Let c(s) be a number of instances in segment s. In case a^p +b^p =c^p (i.e. the Last Fermat theorem) it should hold: For example in G(p) the values c(s) are: p=2: 1, 3, 5, 7, 9, 11 13, 15, 17, 19, 21, 23, 25, 27 .. p=3: 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, ... p=5: 1, 31, 211, 781, 2101, 4651, ... p=7: 1, 127, 2059, 14197, ... Only in case p=2 such sums are known:
In case p=3, i.e. G(3) the values c(s) are: In the table it holds: (2a) R[i,j]=R[i,1]+R[i+1,j-1] E.g. R[3,3]=R[3,1]+R[4,2]=19+98=117 Written in an other way: (2b) R[i,j]=R[i-1,j+1]-R[i-1,1] E.g. R[4,2]=R[3,3]-R[3,1]=117-19=98
Congruences
The equation (1) must hold also for every module m: Therefore, sum of numbers in a block of some adjacent rows from the first table should be equal to the numbers of one row from the second table (for each column).
Some small dependencies
From the expression (b+p)^p-b^p = (mod p) and from the structure of diferential progressions of self-classes follows: s[(b+p)^p-(b+p)]/p - (b^p-b)/p = -1 (mod p ) (b+p)^p - b^p = ( mod p^2 ).

6. Vladimir S. Karapysh Fermat Theorem
Vladimir S. Karapysh fermat theorem Krasnodar 1997 See also VS KarapyshAMS Subject classification 00õõ Year 1997 fermat theorem
http://im.bas-net.by/mathlib/en/papers/31.html
The library Registration Add an author Add a paper ... Departments
Paper information
Vladimir S. Karapysh Fermat Theorem Krasnodar 1997
See also V.S. Karapysh AMS Subject classification:
Year: 1997 fermat theorem The file is not available for downloading: The authors did not submit the file
Information in the paper's language
See also V.S. Karapysh This record has been created 12/08/1999 by V.S. Karapysh Edit The library was opened 21 August 1998.
zavadsky@im.bas-net.by

software version 2.3 28 Spt 1998

7. Mbox: Wiles' Proof Of The Fermat Theorem
Wiles' proof of the fermat theorem. Zdzislaw Meglicki (Zdzislaw.Meglicki@cisr.anu.edu.au)Mon, 14 Nov 1994 160644 +1100 (EST)
http://www-unix.mcs.anl.gov/qed/mail-archive/volume-2/0077.html
Wiles' proof of the Fermat Theorem
Zdzislaw Meglicki Zdzislaw.Meglicki@cisr.anu.edu.au
Mon, 14 Nov 1994 16:06:44 +1100 (EST)
In the last issue of the New Scientist, I've found a brief note that
Andrew Wiles has fixed the problem in his proof of the last Fermat
Theorem, which should really be renamed to "Fermat-Wiles" theorem, if
the proof is correct. Chatting about it with John Slaney, we came to the
conclusion that the verification of that proof would be an ideal Holy
Grail for QED. In other words, if you could use the QED system in order
to verify a proof as complex and convoluted as Wiles' proof, you'd
demonstrate to all mathematicians enormous usefulness of such a system.
Greetings to all,
Zdzislaw Meglicki, Zdzislaw.Meglicki@cisr.anu.edu.au The Australian National University, Canberra, A.C.T., 0200, Australia, fax: +61-6-249-0747, tel: +61-6-249-0158

8. Pierre De Fermat Theorem "last"
Fermat's last theorem Z sphere cu = X sphere cu + Y sphere cu (cbic units of three dimentions), sphere/cube volume ratio .367552596.
http://www.vorpublishing.com/pierre-de-fermat.html
Welcome to Kevin Trinder's work in progress
for the self-publishing of:
NUMBER THEORY

an unqualified demonstration June 1996
(Kevin Trinder's reconciliation and research of,
"the theory of numbers") ISBN 0-646-28727-3
(last updated January 24th 2003)
Pierre de Fermat's "last theorem"
Second and third dimensions
perfect cubes and perfect squares
cubes of one cubic unit (COOCU)
basic numerals and indices indices and their evaluation cubes and cuboids surface area/volume phenomenon spheres space/contained occupied sphere/cube volume ratio .367552596. (transcendental) inverse 2.720699 Z, pi and the square root of three sphere cubic units Indices Index or powers base-n^1, 2, 3, 4, 5, 6, 7, 8, 9, ... Page 35 Theory of Numbers and Integers by Kevin Trinder Page 37 Page 36A Summary and QED for page 36 (in progress as at July 10 2000): To give a Theory on Numbers by Kevin Trinder and A tribute to Pierre de Fermat I have put the above (Page 36A) on hold: . . .notion of, a possible "unacceptable false assumption. . . . The Pierre de Fermat Link Kevin Trinder's tribute ... positive integer/non-negative number 1728.

9. Euler-Fermat Theorem
First of all, Fermat's theorem states that if p is a prime, then a = a p mod(p)where a is any integer If we divide by a on both sides of this equation we get
http://www.cs.usask.ca/resources/tutorials/csconcepts/encryption/Lessons/L5/Eule

10. Trailpost 10 More Euler Phi
Learn It. Theorem 10.1 Fermat's Theorem. 81 º 1 (mod 5). Theorem 10.2 The Euler fermat theorem. Euler proved a more powerful theorem than Fermat's Theorem.
http://www.cs.usask.ca/resources/tutorials/csconcepts/numbertheory/tutorial/trai

11. MAD Scientist: Fermat Theorem
fermat theorem. Question Fermat's Last Theorem did Fermat have proof or did heguess? Submitted 16 February, 1998 by Jerry Marcantel of Glenmora, LA USA.
http://spider.ipac.caltech.edu/staff/waw/mad/mad9.html
Fermat Theorem
Question:
Fermat's Last Theorem: did Fermat have proof or did he guess?
Submitted 16 February, 1998 by Jerry Marcantel of Glenmora, LA USA. I am a amateur mathematician. On PBS I saw a show on the guy Andrew Wiles who proved Fermat's Last Theorem. Some of the mathematicians "hinted" that Fermat did not have any proof. That Fermat just stated his theorem with on proof. Is this a general consensus in the math community?
Answer:
16 February 1998 This is definitely not my field of expertise, but I am pretty sure that it is the consensus of the experts that Fermat was probably mistaken. First, the problem has received an enormous amount of attention over the centuries from the very best mathematicians. The fact that none of them found a short proof (supposing Fermat's proof was not much longer than the margin would hold this is suggested by Fermat's description of it as "truly wonderful"), nor indeed any proof at all, makes one wonder. Second, it seems clear that if Fermat had a proof, it must have been quite different than the one we have today. For the prerequisites, the mathematical concepts used in the proof, on which Wiles was able to build, had not even been developed in Fermat's time. Third, there are some shorter partial proofs, and I think even some short, seductive, but mistaken ones, that have been discovered over the years, some by good mathematicians. Possibly Fermat's proof was one of these. Mathematicians do often guess, but of course a guess is never a proof! The inspired guess leads the way, motivates and guides the hard struggle to construct a rigorous proof, but no honest mathematician would ever knowingly say he had proved something that he had only guessed. But a strong hunch can lead you to believe a conjecture is true, and then it is not too uncommon to overlook subtle logical flaws in the proof constructed to establish the guess beyond all doubt. Wiles himself at first fell victim to such an error, which, fortunately, he was able to repair.

12. Fermat's Little Theorem
Another private reply John, In Carmichael's 1914 number theory text, he says it is often referred to as the simple fermat theorem. He also attributes
http://www.spd.dcu.ie/johnbcos/fermat's_little_theorem.htm
Fermat's little theorem Friday 17 th August 2001 was the 400 th anniversary of the birth of Pierre de Fermat , and by way of a personal homage I decided that for the ICTMT5 meeting in Klagenfurt, Austria - held the week prior to Fermat's anniversary - I would offer a talk, using Maple, called Fermat's little theorem . It was never my intention to cover all of my prepared talk in Klagenfurt, and, in the event, I covered less than 0.1% of what I actually prepared. My Maple worksheet (129KB) may be downloaded here , and a (large) html version of it may be downloaded here large because Maple converts all outputs to gif files, and there are 447 of those in the worksheet). I dedicated my lecture to Mark Daly - a former colleague, and friend - as a token of my regard for him.
Klaus Barner of Kassel university, Germany, disputes the date of Fermat's birth, and interested persons ought to read his papers: Pierre de Fermat (1601? - 1665) , European Mathematics Society Newsletter No. 42, December 2001 How old did Fermat become? 2001

13. Fermat Theorem
fermat theorem. As being a amateur of mathematics, I have studiedthe fermat theorem for 20 years and gained a certain result. I
http://info.scsti.ac.cn/Ch/wwwboard/mess_busi/438.html

14. Re Fermat Theorem
Re fermat theorem. ? Jay Dillon on February 02, 1999 at 171744 fermat theorem ? Darong, Lan on November 18, 1998 at 201009
http://info.scsti.ac.cn/Ch/wwwboard/mess_busi/500.html

15. PlanetMath: Euler-Fermat Theorem
Eulerfermat theorem, (Theorem). Given , when gcd , where is the Euler totientfunction. See Also Fermat's little theorem, Fermat's theorem proof
http://planetmath.org/encyclopedia/EulerFermatTheorem.html
Math for the people, by the people. Encyclopedia Books Papers Expositions ... Random Login create new user name: pass: forget your password? Main Menu the math Encyclop¦dia
Papers

Books

Expositions

meta Requests
Orphanage

Unclass'd

Unproven
...
Corrections

talkback Polls
Forums
Feedback Bug Reports information Docs Classification News Legalese ... TODO List Euler-Fermat theorem (Theorem) Given when gcd , where is the Euler totient function "Euler-Fermat theorem" is owned by KimJ view preamble View style: HTML with images page images TeX source See Also: Fermat's little theorem Fermat's theorem proof Other names: Euler's theorem Keywords: number theory
Attachments:
proof of Euler-Fermat theorem (Proof) by KimJ
Cross-references: Euler totient function This is version 4 of Euler-Fermat theorem, born on 2001-10-15, modified 2002-01-23. Object id is 198, canonical name is EulerFermatTheorem. Accessed 913 times total. Classification: AMS MSC (Number theory :: General reference works) Pending Errata and Addenda None. View all 1 Discussion Style: Flat Threaded Expand: all none Order: Oldest First Newest first No messages.

16. PlanetMath: Fermat's Theorem Proof
parent Fermat's theorem proof, (Proof). Consider the sequence . They are SeeAlso Eulerfermat theorem This object's parent. Cross-references
http://planetmath.org/encyclopedia/FermatsTheoremProof.html
Math for the people, by the people. Encyclopedia Books Papers Expositions ... Random Login create new user name: pass: forget your password? Main Menu the math Encyclop¦dia
Papers

Books

Expositions

meta Requests
Orphanage

Unclass'd

Unproven
...
Corrections

talkback Polls
Forums
Feedback Bug Reports information Docs Classification News Legalese ... TODO List Fermat's theorem proof (Proof) Consider the sequence They are all different (modulo p) because if with then and since we get which is impossible. Now, since all these numbers are different, the set will have the possible congruence classes (although not necessarily in the same order ) and therefore and using we get "Fermat's theorem proof" is owned by drini view preamble View style: HTML with images page images TeX source See Also: Euler-Fermat theorem This object's parent Cross-references: order congruence sequence This is version 3 of Fermat's theorem proof, born on 2001-10-15, modified 2002-10-21. Object id is 223, canonical name is FermatsTheoremProof. Accessed 747 times total. Classification: AMS MSC (Number theory :: General reference works) Pending Errata and Addenda None.

17. Ask Jeeves: Search Results For "Fermat Theorem"
Popular Web Sites for fermat theorem . 1. Fermat's last theorem Despite large prizesbeing offered for a solution, Fermat's Last Theorem remained unsolved.
http://webster.directhit.com/webster/search.aspx?qry=Fermat Theorem

18. Iatco Sergiu. Simplification Of Prove Of Fermat Theorem
Iatco Sergiu. Simplification of prove of fermat theorem. R First timeI read about Fermat's last theorem when I was 15 years old. Just
http://lib.kts.ru/TXT/fermat.txt
Iatco Sergiu. Simplification of prove of Fermat theorem
R.Moldova District Rascani Village Recea itsergiu@yahoo.com Date: 4 May 1999 Dear Sir, I am an amateur mathematician. First time I read about Fermat's last theorem when I was 15 years old. Just like other people from the beginning I dreamt to prove one day it. Last year I found out that A.Wiles and R.Taylor proved it. I read this proof and I found it (just like other people) too complex. I analysed the Fermat's last theorem and I succeed to simplify it as follows: Let have Fermat's equation: a n +b n =c n , where n>2 (1) Because c=p1*...*pt, where pi - prime number, equation (1) becomes: a n +b n n *...*pt n (2) If exist such pi for which a1 n n = pi n (3) has solutions then these solutions are also solutions for (2) Let r= p1*...*pi-1*pi+1*...*pt Multiplying (3) with r n we have: (r*a1) n +(r*b1) n = pi n , let a=r*a1 b=r*b1 a n +b n n *...*pt n Theorem 1 (unproved by me) a n +b n n *...*pt

19. Pierre De Fermat
117648 and 117648/7=16806rest6. The general form of this strange behaviourof the numbers is called The Smaller fermat theorem .
http://www.surveyor.in-berlin.de/himmel/astro/Fermat-e.html
The ancient mechanism of the stargate had rendered im good services,
but he wouldn't need them anymore. The flames of the inferno did no harm
to the child. Still the quarder shaped appearance was floating in front
of him; hidden inside it had undiscovered mysteries of space and time.
But some of them the child already understood and thought to master them.
How obviously - how necessary! - was the mathematical relation of the sides
of the monolith - the square sequence of 1 : 4 : 9! And how naiv it was
to assume that this series would end up only within the three dimensions!
(Arthur C. Clarke, "2001 - Odyssee im Weltraum", 1969, Heyne 1978, retranslated)

Pierre de Fermat
The Mysteries of the Powers of Integers
Pierre de Fermat was born at the 17th of August in 1601 in Beaumont de Lomagne, France. This birthday is not completely sure, but it is based on the fact that the christening happend at August 20. - After school he studied jurisprudence, and with an age of 30(33?) he became councillor at the court of Toulouse. According to mathematics, Fermat was amateur and probably self-tought. His sources were Greek texts about mathematics, most of all the book "Arithmetica" of Diophantos of Alexandria, covering problems of mathematics of the ancient times. Despite of his amateur state Fermat - besides of Descartes (1596-1650) - has the reputation as one of the greatest mathematician of his Century, and with Descartes he is one of the developer of the geometry of axes, and with this a founder of analytical geometry. He was one of the pioneers of infinitesimal calculation, because he was working with own methods on the integration of powers with integer and fractial exponents. With this he solved tangent problems covering the integration and differentiation of curves, the finding of maxima and zero points. He had correspondence with some famous contemporaries, besides other with Blaise Pascal and

20. NOVA Online | The Proof
Science show "Nova" delves into the topic of fermat's Last theorem. Find an interview with Andrew Wiles and a report on female mathematicians. of science struggled to prove what was known as fermat's Last theorem the idea that a certain simple equation had no
http://www.pbs.org/wgbh/nova/proof
For over 350 years, some of the greatest minds of science struggled to prove what was known as Fermat's Last Theorem the idea that a certain simple equation had no solutions. Now hear from the man who spent seven years of his life cracking the problem, read the intriguing story of an 18th century woman mathematician who hid her identity in order to work on Fermat's Last Theorem, and demonstrate that a related equation, the Pythagorean Theorem, is true.
Text
Proof Home Andrew Wiles ... To print
NOVA Online is produced for PBS by the WGBH Science Unit

Page 1     1-20 of 101    1  | 2  | 3  | 4  | 5  | 6  | Next 20

free hit counter