Precomputer History Of Pi In 1844, Johann dase (aka, zacharias Dahse), a calculating prodigy (or idiotsavant ) hired by the Hamburg Academy of Sciences on Gauss's recommendation http://personal.bgsu.edu/~carother/pi/Pi2.html
Extractions: That the ratio of circumference to diameter is the same (and roughly equal to 3) for all circles has been accepted as "fact" for centuries; at least 4000 years, as far as I can determine. (But knowing why this is true, as well as knowing the exact value of this ratio, is another story.) The "easy" history of concerns the ongoing story of our attempts to improve upon our estimates of . This page offers a brief survey of a few of the more famous early approximations to The value of given in the Rhynd Papyrus (c. 2000 BC) is Various Babylonian and Egyptian writings suggest that each of the values were used (in different circumstances, of course). The Bible (c. 950 BC, 1 Kings 7:23) and the Talmud both (implicitly) give the value simply as 3. Archimedes of Syracuse (240 BC), using a 96-sided polygon and his method of exhaustion, showed that and so his error was no more than The important feature of Archimedes' accomplishment is not that he was able to give such an accurate estimate, but rather that his methods could be used to obtain any number of digits of . In fact
Ludolfina Johann zacharias dase i LK Strasznicky, 1844, 200 cyfr po przecinku, suma trzechskladników typu arc tg, dase potrafil w pamieci mnozyc liczby 100cyfrowe. http://pi.home.staszic.waw.pl/liczby/pi.html
Extractions: L niewymierna i przestêpna Autor Czas i miejsce Metoda, komentarz Babiloñczycy i inne ludy staro¿ytne warto¶æ najpowszechniej stosowana w staro¿ytno¶ci do celów praktycznych (ocena obwodu lub pola ko³a, np. w Biblii: 1 Król. 7:23) Egipcjanie pocz. II tys. p.n.e. przybli¿enie otrzymane przy próbie oceny pola ko³a przez pole o¶miok±ta foremnego Archimedes Syrakuzy, III w. p.n.e. metoda wprowadzona przez Archimedesa i zastosowana do 96-k±ta foremnego Ptolemeusz Aleksandria, ok. 150 n.e. wynik otrzymany po rozwa¿eniu 360-k±ta (metoda nieco inna ni¿ Archimedesa) ró¿ni autorzy ¶redniowieczni ocena powszechnie przyjmowana w nauce przez ponad 1000 lat (np. Czung Hing ok. 250 n.e., Brahmagupta, ok. 640, Al-Chwarizmi, ok. 800) Liu Hui Chiny, III w. n.e. metoda Archimedesa dla 3072-k±ta Ariabhata Indie, ok. 500 n.e. metoda Archimedesa
Ìàãèÿ ×ÈÑÅË. Ðîáýð Òîêý. 1960 zacharias dase, born in Germany in 1824, distinguished himself from the majorityof lightning calculators by the fact that he placed his ability at the service http://users.lk.net/~stepanov/mnemo/magic.html
Extractions: Among calculating prodigies who were otherwise backward or who had very little education, let us recall those who had the greatest renown in the past before examining present-day calculators in greater detail. The Greek writer Julian mentions a certain Nikomachos, who lived at Gerasa in Palestine in the second century of our era, and who found solutions to difficult problems very rapidly. Balthasar of Monconys, in an account of his third journey in Italy, records that in 1664 Mathieu le Coq, then aged eight and unable to read or write, had been performing advanced arithmetical operations, such as multiplications with five or six figures and extractions of square and cube roots, for some two years previously. Thomas Fuller, nicknamed the Virginian Calculator, or the Negro Calculator, was almost totally ignorant. A slave in Virginia in the middle of the eighteenth century, he could neither read nor write and he died at the age of eighty without ever having learned to do so. Scripture records the following story about him in the American Journal of Psychology: "When Fuller was about seventy years old, two gentlemen of Pennsylvania, William Hartshorne and Samuel Coates, both men worthy of confidence, heard of the calculator and had the curiosity to have him brought before them and put to him the following problems: First, how many seconds are there in a year and a half? Fuller replied in two minutes that there are 47,340,000 seconds. Secondly, how many seconds has a man lived who is aged seventy years, seventeen days and twelve hours? Fuller replied at the end of a minute and a half: 2,210,800,800. One of the gentlemen who examined him had taken the trouble to do the calculation on paper and told Fuller he was wrong and that the number of seconds was less. But Fuller pointed out promptly that this difference in the two results had to do with leap years."
Aitcen factorizing composite numbers. In my brief introductory remarks I mentionedthat zacharias dase compiled factor tables. He would doubtless http://users.lk.net/~stepanov/mnemo/aitkene.html
Extractions: Mnemonic Articles Monday November W. R. Howard, President in the Chair THE ART OF MENTAL CALCULATION; WITH DEMONSTRATIONS By Professor A. C. AITKEN, M.A., D.Sc., LL.D., F.R.S., F.R.S.E., Hon.F.S.E. The President extended a hearty welcome to the guests who were present and expressed (he hope that they would have an enjoyable evening. Professor Aitken, he said, needed little introduction. He was born and educated in New Zealand, but after war-time service with the New Zealand Forces in the 1914-18 War, where he was seriously wounded, he returned to New Zealand and eventually went to Edinburgh in 1923 for post-graduate study in mathematics. In 1925 he was appointed to a lectureship in Statistics and Mathematical Economics in Edinburgh University. He had written textbooks on algebra and statistical mathematics, was joint author of a textbook on higher algebra, and likewise the author of some seventy memoirs and papers on mathematical subjects. Notices of the meeting indicated a few of the honours which had been bestowed upon the lecturer, and when he himself visited Edinburgh in May of this year to attend the centenary celebrations of the Society, it was his privilege to hand to Professor Aitken the Diploma of Honorary Fellowship of the Society, which was the greatest honour the Society could bestow. PROFESSOR AITKEN Proceedings of the Institution of Civil Engineers , vol. xv
Ancient Pi: Knowers Of The Universe The concept of pi refers to the constant ratio of the diametercircumference of any circle; irrespective Category Science Math Recreations Specific Numbers Pi Nonetheless, in 1844, Johann Martin zacharias dase calculated to 200 decimalplaces, with the first zero appearing at the 32nd decimal place meaning http://www.earthmatrix.com/ancient/pi.htm
Extractions: If we realize that the measurement of the ratio between the diameter and the circumference of a circle is entirely theoretical and speculative, then we may also realize that the result shall always represent an approximation. In fact, the very fact that pi is always expressed in terms of an unending fraction (with mathematicians searching it to the n th number of decimal places), should cause us to accept the idea that pi can only be an approximation. (As Lambert illustrated in 1767, " is not a rational number, i.e., it cannot be expressed as a ratio of two integers"; Beckmann, p.100.)
História Do Pi Translate this page 66. 2.46 zacharias dase (1844) .66. http://www.alunos.utad.pt/~al12940/PiIndice.htm
Extractions: História do Pi Aline de Sousa Alves p Pedro Barroso Magalhães Índice Pág. Introdução Evolução Cronológica do Pi Egipto (~2000 a.C.) Babilónia (~2000 a.C.) China (~1200 a.C.) Bíblia (~550 a.C.) Arquimedes (~250 a.C.) Apollonius de Pérgamo (Séc. III a.C. ) Heron de Alexandria (100 a.C.) Ptolomeu (150 a.C.) Liu Hui (263 d.C.) Tsu Chung-chih (~480) Aryabhata (499) Men (575) Brahmagupta (~640) Mahavira (Séc. IX) Al-Khowarizmi (800) Bhaskara (1150) Fibonacci (1220) Ch'in Kiu-shao (Séc. XIII) Albertus da Saxónia (Séc. XIV) Al-Kashi (1429) Viète (1593) Tycho Brahe (1580) Simon Duchesne (1583) Adriaen Anthoniszoon (~1590) Adriaen van Roomen (1593) Ludolph van Ceulen (1610) Snell (1621) Grienberger (1630) William Oughtred (Séc. XVII) John Wallis (1655) Lorde Brouncker (1658) Isaac Newton (1665) James Gregory (1672) Abraham Sharp (1699) William Jones (1706) John Machin (1706) De Lagny (1719) Matsunaga (1720) Arima Raido (1769) Lambert (1770) Conde de Buffon (1777) Leonhard Euler (1779) Legendre (1794) Georg Vega (1789) William Rutherford (1841) Zacharias Dase (1844) Thomas Clausen (1847) William Rutherford (1853) Richter (1855) Gauss William Shanks (1873) Lindemann (1882) Srinivasa Ramanujan (1914) D. F. Fergunson (1946)
Le Collectif > Science [Esprit Et Cerveau] Translate this page erreurs. Pour sa part, en 1861, Johann Martin zacharias dase multipliamentalement deux nombres de vingt chiffres en six minutes. Si http://www.callisto.si.usherb.ca/~collecti/xxvi/xiii/jfc.htm
TaQ's Homepage Translate this page Esse era doido Joham Marin zacharias dase, filho de um agricultor analfabeto,que viveu entre 1824 e 1861, na Alemanha, multiplicava mentalmente dois http://planeta.terra.com.br/informatica/taq/tnd2/geek.html
Einführung In Die Berechnung Von Pi: Die Geschichte Der Pi-Berechnung Translate this page 1706, John Machin, 100, 1719, De Lagny, 127, davon 112 korrekt. 1754-1802,Vega, 140, 1844, zacharias dase, 200, in 3 Monaten. 1853, William Rutherford,400, http://www.uni-leipzig.de/~sma/pi_einfuehrung/geschichte.html
Extractions: Datum Urheber Stellenzahl Kommentar 2000 v. Chr. Babylonier 287-212 v. Chr. Archimedes 150 v. Chr. Tsu Ch'ung Fibonacci Ludolph von Coelen mit Methode von Archimedes Abraham Sharp John Machin De Lagny davon 112 korrekt Vega Zacharias Dase in 3 Monaten William Rutherford William Shanks davon 527 korrekt; 92 Jahre blieb dieser Fehler unentdeckt US-Staat Indiana Datum Urheber Stellenzahl Kommentar D. F. Ferguson John von Neumann et al. Machins Formel: G. E. Felton davon 7480 korrekt; auf Ferranti PEGASUS in 33 Stunden auf IBM 704 in 100 Minuten auf IBM 7090 in 9 Stunden Jean Guilloud auf CDC 6600 auf CDC 7600 in 24 Stunden in 30 Stunden William Gosper mit der Reihe von Srinivasa Ramanujan: konvergiert David H. Bailey auf CRAY-2-Supercomputer in 28 Stunden auf NEC SX-2-Supercomputer IBM 3090 HITAC S-820/80 IBM 3090 HITAC S-820/80 selbstgebauter Parallel-Computer (Details unbekannt) HITAC S-3800/480 (2 CPU) neuer selbstgebauter Parallel-Computer (Details unbekannt) Simon Plouffe auf HITAC S-3800/480 in 37 Stunden auf HITAC S-3800/480 (2 CPU) Fabrice Bellard die 100.000.000.000ste hexadezimale Stelle: 9Ch
CITATION Translate this page effrayante monotonie, le seul nombre proportionnel pi, cette fraction désespéranteque le génie inférieur d'un calculateur nommé zacharias dase avait un http://pages.globetrotter.net/pcbcr/citation.html
Weltrekorde Für Gedächtnis Und Kopfrechnen Translate this page Von dem bekannten Kopfrechner Johann Martin zacharias dase (Deutschland, 1824-1861)wurden im Jahre 1861 folgende Leistungen überliefert Multiplikation http://www.recordholders.org/de/list/memory.html
Extractions: Sie haben Kommentare, Korrekturen oder neue Rekorde? Bitte schreiben an: info@recordholders.org Merken von Spielkarten ... die meisten Daten aus den Jahren 1600-2100 in einer Minute Links: MemoryXL deutsche und Weltrekorde Links zu interessanten englischsprachigen Seiten finden Sie auf der englischer Version dieser Seite. Wilfried Posin: Alles im Kopf
Memory And Mental Calculation World Records These results from memory competitions show the possibilities of a trained memory.Category Reference Knowledge Management Memory Improvement Johann Martin zacharias dase (Germany, 18241861) multiplied two 20 digit numbersin 6 minutes, two 48 digit numbers in 40 minutes and two 100 digit numbers in http://www.recordholders.org/en/list/memory.html
Dr. Peter Plichta Translate this page er sich, dass dem größten Mathematiker der Geschichte, Carl-Friedrich Gauß, inder Mitte des vorigen Jahrhunderts der junge zacharias dase vorgestellt wurde http://www.plichta.de/deutsch/d_a_ruediger_gamm.php
Extractions: Etwa mit 30 Jahren begann sein Zweifel am herkömmlichen physikalischen Weltbild, was zu weiteren umfangreichen Studien in Philosophie, Geschichte und Mathematik führte. Mit 41 Jahren zog er sich für 6 Jahre in die denkerische Isolation zurück, um dann mit dem Mathematiker Michael Felten (jetzt Dr. habil.) die Struktur und die Verteilung der Primzahlen zu entschlüsseln. Nach weiteren 5 Jahren war der Beweis gelungen, dass die mathematischen Konstanten (Euler-Zahl "e", Kreiszahl
[ S E K O L A H . C O M ] Pada tahun 1844, Johann Martin zacharias dase mencongak p (pi) kepada 200 tempatperpuluhan, di mana sifar yang pertama berada pada tempat perpuluhan yang ke http://www.sekolah.com/article/?show=1&row=0109
Probleme - Ï Translate this page Stellen als richtig. 1844 kam aber zacharias dase tatsächlich aufeine Genauigkeit von 200 Stellen. Das ließ Rutherford keine http://members.tripod.com/sfabel/mathematik/probleme_pi.html
Extractions: Startseite Zur Startseite Überblick 600 v. Chr. ... SCHLUSS Die drei klassischen Probleme der Antike bzw. Aus und ergaben sich dann die angegebenen Schranken. Durch Archimedes wurde Pi also mit 3,14 auf zwei Dezimalen genau angegeben. Um 480 gelangte der Chinese Tsu Chung-Chih zum Wert als "ungenauen" Wert die Zahl Seiten Pi auf neun Dezimalen genau: -Eck. Kurz darauf, 1630, berechnete Grienberger Pi auf 39 Dezimalen genau. Er verwendete die von Snell verbesserte klassische Methode. im heutigen Sinn in allgemeinen Gebrauch. Dazu drei Beispiele: Wie o dies
Berlin Document Center Film Numbers 1806236 I0142 Böhm, zacharias Böpple, Adam 1806237 I0143 1806331J0091 Dappert, Alma - dase, Waldemar 1806332 J0092 http://www.genealogyunlimited.com/daveobee/ewzlist2.html
Extractions: The paperwork that resulted includes a vast amount of information about the families, including birthdates and places, ancestry, places of residence, and the names of contacts in Germany. There are three basic sets of films covering the refugees. Two are in alphabetical order, and one is numeric, following the numbers assigned when the paperwork was done by the German authorities.
Musterungen 1623: 20. Peitz Translate this page Schuster, Bartel Merckisch, Georg Schillingk, Paul Ladisch, Hans Naticius, GregoriusNyprasch, Bartel dase, Merten Hoffmann, zacharias Hoffman, Augustinus Golse http://www.genealogienetz.de/reg/BRG/neumark/m16_peit.htm
Küstrin Chroniken 1801 Und 1849 dase;;Handlungs-Commis;Berlin;Berlin Diewald;Mad.;;Küstrin;Königsberg/Nm. Klosse;zacharias;;Kietz;Königsberg/Nm. http://www.genealogienetz.de/reg/BRG/neumark/ku18subs.htm
Extractions: 6 - De cujo nome derivaram as palavras algoritmo e algarismo que hoje usamos. o valor 964/275 = 3,141818. n n 8 - [1] p.78. e Repetindo o processo k vezes viria k Tomando como ponto de partida um quadrado temos n=4 e =45º donde E Lord William Brouncker (1620-1684) a chegaram quase simultaneamente a onde, fazendo x = 1 vem ou seja pelo que donde Apesar de ser isto o que normalmente os livros dizem sobre a forma como Newton calculou Desta forma podemos obter x por Leonard Euler (1707-1783), apresentada em 1706 por John Machin (1680-1751). A segunda foi fornecida por Sitrassnitzky ao famoso calculador Dase que com ela calculou ir em 1844 com 200 decimais em menos de dois meses de trabalho. A terceira foi utilizada por William Shanks (1812-1882) em 1874 para calcular ir com 707 decimais donde mais tarde Laplace (1749-1827) obteve o que permite calcular A era dos computadores 15 - [1] p.l63.