11G: Arithmetic Algebraic Geometry (Diophantine Geometry) 908374; faltings, gerd, Neuere Entwicklungen in der arithmetischen algebraischenGeometrie , Proceedings of the International Congress of Mathematicians, Vol. http://www.math.niu.edu/~rusin/known-math/index/11GXX.html
Extractions: POINTERS: Texts Software Web links Selected topics here This section is the intersection of fields 11 (Number Theory) and 14 (Algebraic Geometry). The typical question in this area asks, "Are there any points on this variety (i.e., whose coordinates satisfy certain polynomial equations) whose coordinates are rational?" For example, the answer is "yes" when the coordinates are to satisfy the equation x^2+y^2=1 but "no" when the coordinates are to satisfy y^2=x^3-5. However, for simplicity we have placed most materials regarding this topic with the corresponding section of 14: Algebraic Geometry Attached below are a few topics on a related theme: what number-theoretic questions can we ask (and answer) regarding geometric figures? Material on elliptic curves is collected in see also 11Dxx, 14-XX, 14Gxx, 14Kxx Elliptic curves over global fields, See also 14H52
Munzinger Personen - Gerd Faltings nat.. gerd faltings deutscher Mathematiker; Prof., Dr. rer. nat. http://register.munzinger.de/personen/00/000/018/00018370.shtml
Extractions: deutscher Mathematiker; Prof., Dr. rer. nat. Quelle: Internationales Biographisches Archiv 22/1995 vom 22. Mai 1995 Falls Sie zuvor Art und Umfang der Munzinger-Biographien sehen wollen, können Sie über unsere Startseite auch einzelne Texte kostenfrei abrufen. Personen Das Internationale Biographische Archiv
Encyclopædia Britannica View Article Index Entry. faltings, gerd German mathematician who wasawarded the Fields Medal in 1986 for his work in algebraic geometry. http://search.britannica.com/search?ct=eb&query=Brantenberg Gerd
Walmart.com - Lectures On The Arithmetic Riemann-Roch Theorem Lectures on the Arithmetic RiemannRoch Theorem,faltings, gerd available at Walmart.com.Always Low Prices! Author faltings, gerd Noted by Zhang, Shouwu. http://www.walmart.com/catalog/product.gsp?product_id=366990&cat=22007&type=3&de
Walmart.com - Algebraic You Save $2.75 (7%). Lectures on the Arithmetic RiemannRoch Theorem. faltings,gerd. Paperback, Princeton University Press, 2001, ISBN 0691025444. More Info. http://www.walmart.com/catalog/product_listing.gsp?cat=21983&path=0:3920:18865:1
ICM 94: Abstract The ubiquity of stability in algebraic geometry. gerd faltings (Princeton University,Princeton, New Jersey 08540, USA MaxPlanck-Institut, Bonn, Germany). http://www.ams.org/mathweb/icm94/06.faltings.html
Extractions: Gerd Faltings Mumford's notion of stability has found applciations in severl fields, among them moduli-spaces, diophantine approximation and $p$-adic Galois-representations. The purpose of this lecture is to explain how they come up, and to show a little lemma from linear algebra (the tensor-product theorem).
Sci.math FAQ: Fields' Medals 35 1982 Thurston, William Washington DC USA 35 1982 Yau, ShingTung Kwuntung China33 1986 Donaldson, Simon Cambridge UK 27 1986 faltings, gerd Germany 32 1986 http://www.faqs.org/faqs/sci-math-faq/fields/
Extractions: Newsgroups: sci.math sci.answers news.answers From: alopez-o@neumann.uwaterloo.ca (Alex Lopez-Ortiz) Subject: sci.math DI76Lo.92z@undergrad.math.uwaterloo.ca alopez-o@neumann.uwaterloo.ca Organization: University of Waterloo Followup-To: sci.math http://www.utoronto.ca/math/fields.html alopez-o@barrow.uwaterloo.ca alopez-o@barrow.uwaterloo.ca Sun Nov 20 20:45:48 EST 1994 By Archive-name By Author By Category By Newsgroup ... Help
Nordrhein-Westfälische Akademie Der Wissenschaften Translate this page 2001). faltings, gerd, Professor Dr. rer. nat., Professor für Mathematik,Direktor am Max-Planck-Institut für Mathematik (1999). http://www.akdw.nrw.de/Seiten/MitgliederNO.html
Extractions: Nordrhein-Westfälische Akademie der Wissenschaften Klasse für Naturwissenschaften und Medizin Ordentliche Mitglieder (Die eingeklammerten Jahreszahlen geben die Berufungsjahre an.) A B C D ... H I J K L M N O P Q R S T U V W X Y Z Appel , Rolf, Professor Dr. rer. nat., em. o. Professor für Anorganische Chemie, Universität Bonn Assmann , Gerd, Professor Dr. med., FRCP, Professor für Klinische Chemie und Laboratoriumsmedizin, Direktor des Instituts für Klinische Chemie und Laboratoriumsmedizin (Zentrallaboratorium), geschf. Direktor des Instituts für Arterioskleroseforschung an der Universität Münster Broelsch , Christoph E., Professor Dr. med., Dr. h.c. mult., Klinik für Allgemeine und Transplantationschirurgie, Universitätsklinik Essen (2001) Chini , Rolf, Professor Dr. rer. nat. habil., Professor für Astrophysik, Direktor des Astronomischen Instituts, Ruhr-Universität Bochum Dahmen , Wolfgang, Professor Dr. rer. nat., Professor für Mathematik, Institut für Geometrie und Praktische Mathematik, RWTH Aachen (2001) Ehhalt , Dieter Hans, Professor Dr. rer. nat., Direktor des Instituts für Atmosphärische Chemie, Forschungszentrum Jülich GmbH
Jahresprogramm Translate this page Professor Dr. rer. nat. gerd faltings, Bonn Elliptische Kurven. gerd faltings,Professor Dr. rer. nat., geboren am 28. Juli 1954 in Gelsenkirchen-Buer. http://www.akdw.nrw.de/Seiten/p060202.html
Extractions: Elliptische Kurven Diskussion Dieter Richter Professor Dr. rer. nat., geboren am 27.02.1947 in Hannover, 1968 1973 Studium der Physik und Elektrotechnik an der Technischen Universität zu Braunschweig, Studienstiftler; 1977 Promotion an der RWTH Aachen zu einem Thema der Metallphysik; 1978 1979 Postdoc am Brookhaven National Laboratory in den USA; 1983 Habilitation im Fachbereich Physik an der RWTH Aachen, 1985 1989 Senior Scientist und Group Leader am Institut Laue Langevin in Grenoble; 1989 gemeinsame Berufung als Direktor des Instituts für Neutronenstreuung des IFF des Forschungszentrums Jülich und an den Fachbereich Chemie der Universität Münster. Ehrungen und Preise: 1987 Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft; 1990 Max-Planck-Forschungspreis der Alexander von Humboldt Stiftung und Max-Planck-Gesellschaft; 1997 Honorary Chair an der Universität des Baskenlandes San Sebastian; 1998 Fellow of the American Physical Society; 1993 1998 Vorsitzender des Komitees für die Forschung mit Neutronen; 1994 Gründer und erster Präsident der European Neutron Scattering Association; 2000 Scientific Director des ESS Projekts, Vorsitzender des Scientific Advisory Committees der ESS. Aus dem Inhalt des Vortrags:
Extractions: L. Adleman/M. Huang: Primality testing and abelian varieties over finite fields. SLN Math. 1512 (1992). 5375 G. Belyi: On Galois extensions of the maximal cyclotomic field. Math. USSR Izvestiya 14 (1980), 247-256. Massimo Bertolini/Giuseppe Canuto: La congettura di Shimura-Taniyama-Weil. Boll. UMI 10-A (1996), 213-247. This expository paper outlines the proof of the conjecture of Shimura-Taniyama-Weil for semistable elliptic curves by Wiles and illustrates some consequences of this work on Fermat's last theorem and the conjecture of Birch and Swinnerton-Dyer. 8336 Amnon Besser: Euler systems for higher-weight modular forms. Internet 1996, 6p. G. Billing/K. Mahler: On exceptional points on cubic curves. J. London Math. Soc. 15 (1940), 32-43. The authors show that on an elliptic curve defined over Q there don't exist rational points of order 11. 1990 S. Bloch: The proof of the Mordell conjecture. Math. Intell. 6/2 (1984), 41-47. Enrico Bombieri: The Mordell conjecture revisited. Annali di Pisa 17 (1990), 615-640. 3453 A. Brumer/O. McGuiness: The behaviour of the Mordell-Weil group of elliptic curves. Bull. AMS 23 (1990), 375-382. A. Buium: Differential algebra and diophantine geometry. Hermann 1994, 190p. 2-705-66226-X. FFR 130. "The book develops differential algebraic geometry, a geometry in which local theory is provided by classical differential algebra ... This theory has intriguing applications to diophantine geometry: the author gives new proofs of the conjectures of Lang and Mordell over function fields of characteristic zero." (EMS Newsletter). Fabrizio Catanese (ed.): Arithmetic geometry. Symp. Math. 37 (1997), 300p. 2681 J.S. Chahal: Topics in number theory. Plenum Press 1988. 7806 Barry Cipra: Fermat prover points to next challenges. Science 22 March 1996, 1668-1669. 3277 John Coates: Elliptic curves with complex multiplication and Iwasawa theory. Bull. London Math.Soc. 23 (1991), 321-350. R. Coleman: Effective Chabauty. Duke Math. J. 52 (1985), 765-770. Very sharp upper estimates for the number of rational points in special cases. 5678 Jean-Louis Colliot-Thelene/Dimitri Kanevsky/Jean-Jacques Sansuc: Arithmetique des surfaces cubiques diagonales. 1938 Wstholz, 1-108. 6324 Jean-Louis Colliot-Thelene/Kazuya Kato/Paul Vojta (ed.): Arithmetic algebraic geometry. SLN Math. 1553 (1993), 220p. 3-540-57110-8. DM 82. 1744 Gary Cornell/Joseph Silverman (ed.): Arithmetic geometry. Springer 1986. Standard reference. Gary Cornell/Joseph Silverman/Glenn Stevens (ed.): Modular forms and Fermat's last theorem. Springer 1997, 3-540-94609-8. $50. 3445 Pierre Deligne: Preuve des conjectures de Tate et de Shafarevich. Asterisque 121/122 (1985, 25-41. B. Edixhoven/J.-H. Evertse: Diophantine approximation and abelian varieties. SLN Math. 1566 (1993). 3-540-57528-6. DM 34. Fabiano/G. Pucci/A. Yger: Effective Nullstellensatz and geometric degree for zero-dimensional ideals. Acta Arithm. 78 (1996), 165-187. 1858 Gerd Faltings: Die Vermutungen von Tate und Mordell. Jber. DMV 86 (1984), 1-13. 1859 Gerd Faltings: Endlichkeitssaetze fuer abelsche Varietaeten ueber Zahlkoerpern. Inv. Math. 73 (1983), 349-366. Gerd Faltings: Lectures on the arithmetic Riemann-Roch theorem. Annals of Mathematics Studies 1993. Paperback ISBN 0-691-02544-4. $15. The arithmetic Riemann-Roch theorem has been shown recently by Bismut, Gillet and Soule'. The proof mixes algebra, arithmetic and analysis. "This book contains very deep and quite recent results. ... In contrast to the very interesting contents the style of presentation seems rather problematica to me ... There is more or less no motivation for definitions and results, and it is also not indicated what the results could be used for ... " (A. Cap). 4784 Gerd Faltings: Recent progress in diophantine geometry. 4727 Casacuberta/Castellet, 78-86. Gerd Faltings: Calculus on arithmetic surfaces. Annals Math. 118 (1984), 387-424. 1844 Gerd Faltings/Gisbert Wuestholz (ed.): Rational points. Vieweg 1986. 3604 Eberhard Freitag/Reinhardt Kiel: Etale cohomology and the Weil conjecture. Springer 1988. Gerhard Frey: Links between solutions of A-B=C and elliptic curves. SLN Math. 1380 (1989), 31-62. Gerhard Frey: Rationale Punkte auf Fermatkurven und getwisteten Modulkurven. J. reine u. angew. Math. 331 (1982), 185-191. Gerhard Frey: Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Saraviensis 1 (1986), 1-40. Gerhard Frey: On Artin's conjecture for odd 2-dimensional representations. SLN Math. 1585 (1994). 3-540-58387-4. 3716 G. van der Geer/F. Oort/J. Steenbrink (ed.): Arithmetic algebraic geometry. Birkhaeuser 1991. Fernando Gouvea/Noriko Yui: Arithmetic of diagonal hypersurfaces over finite fields. Cambridge UP 1995, 180p. 0-521-49834-1. $33. This book deals with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. Gu''nter Harder: Eisensteinkohomologie und die Konstruktion gemischter Motive. SLN Math. 1562 (1993), 180p. 3-540-57408-5. 9663 Gu''nter Harder: Wittvektoren. Jber. DMV 99 (1997), 18-48. Yves Hellegouarch: Courbes elliptiques et quations de Fermat. These, Besancon 1972 (?). Yves Hellegouarch: Invitation aux mathematiques de Fermat-Wiles. Masson 1997, 400p. ISBN 2-225-83008-8 (pb) (or ISSN 1269-7842). 5363 John Horgan: Fermat's MacGuffin. Scientific American September 1993, 14-15. In June 1993 Andrew Wiles proposed a proof of Fermat's last theorem, although the complete paper, 200 pages long, has still to be examined in detail, most experts believe the proof should be true. For seven years, after that Frey and Ribet had reduced the problem to a (difficult!) problem about elliptic curves, Wiles virtually stopped writing papers, attending conferences or even reading anything unrelated to his goal. 4732 Wilfred Hulsbergen: Conjectures in arithmetic algebraic geometry. Vieweg 1992. 2718 Horst Knoerrer a.o.: Arithmetik und Geometrie. Birkhaeuser 1986. 1850 Neal Koblitz (ed.): Number theory related to Fermat's last theorem. Birkhaeuser 1982. 2054 V. Kolyvagin: On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. MPI Mathematik Bonn 69/1990. 1848 Hanspeter Kraft: Algebraische Kurven und diophantische Gleichungen. 1847 Borho, 93-114. 3450 Gerhard Kramarz: All congruent number less than 2000. Math. Ann. 273 (1986), 337-340. 1885 Serge Lang: Integral points on curves. Publ. IHES 6 (1960), 27-43. Serge Lang: Higher dimensional diophantine problems. Bull. AMS 80 (1974), 779-788. 1889 Serge Lang: Hyperbolic and diophantine analysis. Bull. AMS 14 (1986), 159-205. 5207 Serge Lang: Vojta's conjecture. SLN Math. 1111 (1985), 407-419. 2015 Serge Lang: Fundamentals of diophantine geometry. Springer 1983. Serge Lang: Number theory III. Diophantine geometry. Springer 1991, 300p. DM 128. "Das vorliegende Buch gibt einen hervorragenden und geschmackvollen Ueberblick ueber die diophantische Geometrie." (G. Wuestholz). 4652 Serge Lang: Introduction to Arakelov theory. Springer 1988. 3607 Serge Lang: Elliptic curves - diophantine analysis. Springer 1978. Michael Larsen: Unitary groups and l-adic representations. Thesis. Princeton UP 1988. Michael Larsen: Arthmetic compactification of some Shimura surfaces. See Zentralblatt 760 (1993), 57. Qing Liu: Algebraic geometry and arithmetic curves. Oxford UP 2002, 460p. Pds 40. 3427 David Masser: Counting points of small height on elliptic curves. Bull. Soc.Math. France 117 (1989), 247-265. 3428 David Masser/Gisbert Wuestholz: Estimating isogenies on elliptic curves. Inv. Math. 100 (1990), 1-24. 3093 Barry Mazur: Number theory as gadfly. Am. Math. Monthly 98 (1991), 593-610. Predicts the key role of Taniyama's conjecture in the proof of Fermat's theorem. At the same time an introduction to Riemann surfaces for beginners! Very beautiful. 4935 Barry Mazur: Arithmetic on curves. Bull. AMS 14 (1986), 207-259. Barry Mazur: Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), 33-186. Barry Mazur: Rational isogenies of prime degree. Inv. Math. 44 (1978), 129-162. Barry Mazur/Andrew Wiles: Class fields of abelian extensions of Q. Inv. Math. 76 (1984), 179-330. J.-F. Mestre: Construction of an elliptic curve of rank ³ 12. Comptes Rendus 295 (1982), 643-644. J. Mestre: Formules explicites et minorations de conducteurs de varietes algebriques. Comp. Math. circa 58 (1986), 209-232. On the rank of the group of rational points of an elliptic curve. Carlos Moreno: Algebraic curves over finite fields. Cambridge UP 1990, 270p. 0-521-34252-x. Pds. 30. Should be somewhat difficult to read. J. Oesterle': Nouvelles approches du theoreme de Fermat. Asterisque 161-162 (1988), 165-186. Explains the link between Fermat's problem and the associated elliptic curve introduced by Hellegouarch and Frey. The proofs make essential use of the arithmetic theory of modular forms. A. Parshin: Algebraic curves over function fields I. Izv. Ak. Nauk SSSR 32 (1968), 1145-1170. A. Parshin: Quelques conjectures de finitude en geometrie diophantienne. Actes Congr. Int. Math. 1 (1970), 467-471. E. Peyre/Y. Tschinkel (ed.): Rational points on algebraic varieties. Birkha''user 2001, 450p. Eur 85. 4888 Christoph Poeppe: Der Beweis der Fermatschen Vermutung. Spektrum 1993/8, 14-16. Alf van der Poorten: Notes on Fermat's last theorem. Wiley 1996, 220p. 0-471-06261-8. Paulo Ribenboim: Fermat's last theorem for amateurs. Springer 1999. 3-540-98508-5. $40. Kenneth Ribet: On modular representations of Gal(A/Q) arising from modular forms. Inv. Math. 100 (1990), 431-476. [A=algebraic numbers.] Kenneth Ribet: Twists of modular forms and endomorphisms of abelian varieties. Math. Annalen 253 (1980), 43-62. Kenneth Ribet: From the Taniyama-Shimura conjecture to Fermat's last theorem. Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. 5641 Kenneth Ribet: Wiles proves Taniyama's conjecture; Fermat's last theorem follows. Notices AMS 40 (1993), 575-576. 7178 Kenneth Ribet: Galois representations and modular forms. Bull. AMS 32 (1995), 375-402. 8338 Karl Rubin: Modularity of mod 5 representations. Internet 1995, 9p. An elliptic curve defined over Q and semistable at 3 and 5 is modular. 7768 Karl Rubin: Euler systems and exact formulas in number theory. Jber. DMV 98 (1996), 30-39. 3449 P. Satge': Un analogue du calcul de Heegner. Inv.Math. 87 (1987), 425-439. 1962 S. Schanuel: Heights in number fields. Bull. SMF 107 (1979), 433-449. 4801 Claus-Guenther Schmidt: Die Fermat-Kurve und ihre Jacobi-Mannigfaltigkeit.2718 Knoerrer, 9-28. 3594 Claus-Guenther Schmidt: Arithmetik abelscher Varietaeten mit komplexer Multiplikation. SLN Math. 1082 (1984). 3430 R. Schoof: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483-494. Jean-Pierre Serre: Lectures on the Mordell-Weil theorem. Vieweg 1989, 220p. DM 52. Jean-Pierre Serre: Proprietes galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15 (1972), 259-331. Jean-Pierre Serre: Sur les representations modulaires de degre' ? de Gal(A/Q). Duke Math. J. 54 (1987), 179-230. [A=algebraic numbers.] Goro Shimura: Correspondances modulaires et les fonctions zeta de courbes algebriques. J. Math. Soc. Japan 10 (1958), 1-28. Goro Shimura: On the factors of the Jacobian variety of a modular function field. J. Math. Soc. Japan 25 (1973), 523-544. Goro Shimura: Class fields over real quadratic fields and Hecke operators. Annals Math. 95 (1972), 130-190. Goro Shimura: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J. 43 (1971), 199-208. 3150 T. Shioda: Mordell-Weil lattices and sphere packings. Am. J. Math. 113 (1991), 931-948. 1919 Joseph Silverman: Lower bound for the canonical height on elliptic curves. Duke Math. J. 48 (1981), 633-648. 11731 Simon Singh/Kenneth Ribet: Die Lo''sung des Fermatschen Ra''tsels. Spektrum 1998/1, 96-103. C. Soule'/D. Abramovich/J.-F. Burnol/J. Kramer: Lectures on Arakelov geometry. Cambridge UP, 190p. 0-521-41669-8. Pds. 30. S. Stepanov: Arithmetic of algebraic curves. Consultants Bureau 1994. 0-306-11036-9. G. Stevens: Stickelberger elements and modular parametrizations of elliptic curves. Inv. Math. 98 (1989), 75-106. On uniformization of elliptic curves by modular curves. 3560 N. Suwa: Fermat motives and the Artin-Tate formula II. Proc.Japan Ac. 67A (1991), 135-138. 8706 Peter Swinnerton-Dyer: Diophantine equations - the geometric approach. Jber. DMV 98 (1996), 146-164. 3444 L. Szpiro: La conjecture de Mordell. Asterisque 121/122 (1985), 83-103. 3322 L. Szpiro (ed.): Seminaire sur les pinceaux arithmetique: la conjecture de Mordell. Asterisque 127 (1985). J. Tunnell: Artin's conjecture for representations of octahedral type. Bull. AMS 5 (1981), 173-175. V. Voevodsky/G. Shabat: Equilateral triangulations of Riemann surfaces and curves over algebraic number fields. Circa 1990. 1737 Paul Vojta: Diophantine approximations and value distribution theory. SLN Math. 1239 (1987). Paul van Wamelen: On the CM character of the curves y^2=x^q-1. J. Number Theory 64 (1997), 59-83. Andre' Weil: L'arithmetique sur les courbes algebriques. Acta Math. 52 (1928), 281-315. Andre' Weil: The field of definition of a variety. Am. J. Math. 78 (1956), 509-524. Andrew Wiles: Modular elliptic curves and Fermat's last theorem. Ann. Math. 141 (1995), 443-551. 1938 Gisbert Wuestholz (ed.): Diophantine approximation and transcendence theory. SLN Math. 1290 (1987). J. Zarhin: Isogenies of abelian varieties over fields of finite characteristics. Mat. Sb. 95/137/3 (1974), 451-461.
Felix.unife.it/Root/d-Mathematics/d-Guida-alla-matematica/t-I-matematici Translate this page 1946) Daniel Quillen (1940) 1982 Alain Connes (1947) William Thurston (1946) Shing-TungYau (1949) 1986 Simon Donaldson (1957) gerd faltings (1954) Michael http://felix.unife.it/Root/d-Mathematics/d-Guida-alla-matematica/t-I-matematici
Extractions: Per un confronto elenchiamo le 18 sezioni in cui stata divisa la matematica in occasione dell'ultimo Congresso Internazionale di Matematica a Kyoto, nell'agosto 1990: Logica matematica e fondamenti Algebra Teoria dei numeri Geometria Topologia Geometria algebrica Gruppi di Lie e rappresentazioni Analisi reale e complessa Algebre di operatori e analisi funzionale Teoria della probabilit e statistica matematica Equazioni differenziali parziali Equazioni differenziali ordinarie e sistemi dinamici Fisica matematica Calcolo combinatorio Aspetti matematici dell'informatica Metodi computazionali Applicazioni della matematica alle altre scienze Storia, didattica, natura della matematica. Pianta provvisoria della biblioteca /* SOSTITUIRE DOPO LA STAMPA CON LA PIANTA */ Medaglie Fields Non esiste il premio Nobel per la matematica, perch Alfred Nobel (1833-1896) o non aveva abbastanza soldi, o ci ha semplicemente dimenticati, o pensava che la matematica fosse una scienza meno importante delle altre, o perch attristato da dolori sentimentali causatigli da un matematico, o forse per tutte queste cause insieme, non ha previsto il premio Nobel per la matematica. Dal 1936 esiste invece la medaglia Fields, che viene conferita ogni 4 anni (con pause dovute a eventuali guerre mondiali) in occasione dei Congressi Matematici Internazionali. Diamo l'elenco delle medaglie Fields finora assegnate: 1936 Lars Ahlfors (1907) Jesse Douglas (1897) 1950 Laurent Schwartz (1915) Atle Selberg (1917) 1954 Kunihiko Kodaira (1915) Jean-Pierre Serre (1926) 1958 Klaus Roth (1925) Ren Thom (1923) 1962 Lars Hrmander (1931) John Milnor (1962) 1966 Michael Atiyah (1929) Paul Joseph Cohen (1934) Alexandre Grothendieck (1928) Stephen Smale (1930) 1970 Alan Baker (1939) Heisuke Hironaka (1931) Sergei Novikov (1938) John Thompson (1932) 1974 Enrico Bombieri (1940) David Mumford (1937) 1978 Pierre Deligne (1944) Charles Fefferman (1949) Gregori Margulis (1946) Daniel Quillen (1940) 1982 Alain Connes (1947) William Thurston (1946) Shing-Tung Yau (1949) 1986 Simon Donaldson (1957) Gerd Faltings (1954) Michael Freedman (1951) 1990 Vladimir Drinfeld (1954) Vaughan Jones (1952) Shigefumi Mori (1951) Edward Witten (1951) Ordinati per discipline matematiche si distribuiscono come segue, va per detto che molti di questi matematici hanno lavorato anche in campi molto diversi da quello in cui hanno preso la medaglia Fields. Questa medaglia viene, per un accordo che finora non mai stato violato, conferita soltanto a matematici di et inferiore ai 40 anni (nell'elenco precedente la data di nascita di ciascuno indicata tra parentesi). Algebra (2): Thompson, Quillen. Algebre di operatori (2): Connes, Jones. Analisi (5): Ahlfors, Douglas, Schwartz, Hrmander, Fefferman. Geometria algebrica (6): Grothendieck, Hironaka, Mumford, Deligne, Faltings, Mori. Geometria differenziale e complessa (4): Kodaira, Atiyah, Margulis, Yau. Geometria differenziale in fisica matematica (2): Drinfeld, Witten. Logica (1): Cohen. Teoria dei numeri (4): Selberg, Roth, Baker, Bombieri. Topologia (8): Serre, Thom, Milnor, Smale, Novikov, Thurston, Donaldson, Freedman. Dal 1983 esiste anche il premio Rolf Nevanlinna, che viene conferito nella stessa occasione a uno scienziato che ha dato i migliori contributi nel campo della matematica applicata in informatica. E' stato vinto nel 1982 da R.ÊTarjan, nel 1986 da L.ÊValiant. Nel 1990 questo premio andato ad A.ÊRazborov, di Mosca, allora 27 anni, per lavori nella teoria della complessit degli algoritmi per funzioni booleane. Forse la pi famosa congettura non risolta della matematica la congettura di Fermat (1601-1665), che dice che non esistono analoghi di grado superiore delle triple pitagoree, cio non esistono numeri naturali x,y,z tutti diversi da zero, tale che xn + yn = zn, se n un numero naturale maggiore di 2. Il risultato per cui Gerd Faltings ha ricevuto la medaglia Fields implica che, per ogni fissato n, il numero delle soluzioni x,y,z, se ne esistono, comunque finito. Questo risultato, ottenuto con metodi avanzatissimi della geometria algebrica, forse il pi sensazionale tra quelli che i vincitori delle medaglie Fields possono vantare. Le tecniche utilizzate da Faltings sono dovute al francese Alexandre Grothendieck, altra medaglia Fields, che negli anni 1960-1970 ha rivoluzionato la geometria algebrica con una massiccia introduzione di algebra commutativa e un sistematico uso della teoria delle categorie. Di ogni Congresso Matematico Internazionale, organizzato dall'Unione Matematica Internazionale, vengono pubblicati gli atti, che spesso contengono i testi di conferenze estremamente interessanti, perch frequentemente impulsi a nuovi campi di ricerca, ma purtroppo da molto tempo non vengono pi acquistati dalla nostra biblioteca. Abbiamo invece un volume che racconta, naturalmente in forma molto breve, la storia di questi congressi fino al 1986: D. ALBERS/G. ALEXANDERSON/C. REID: International Mathematical Congresses. Springer 1987. Recentemente stata fondata l'Unione Matematica Europea, di cui presidente il tedesco Friedrich Hirzebruch, un geometra algebrico, nato nel 1927, vicepresidente Alessandro Fig-Talamanca, un analista armonico, nato nel 1938, che anche presidente dell'Unione Matematica Italiana (UMI). Esiste anche l'Associazione per le Donne in Matematica (Association for Women in Mathematics), un problema delicato di cui parleremo pi tardi. Premi Wolf Il dottor Wolf (1887-1981), un chimico tedesco emigrato in Cuba prima della prima guerra mondiale, amico di Fidel Castro, vissuto in Israele dal 1973, fond con 10 milioni di dollari la Wolf Foundation, che ogni anno conferisce premi in agricultura, chimica, matematica, medicina e fisica. I vincitori di questo premio sono scienziati molto famosi: I premi in matematica sono stati assegnati finora a Izrail Gelfand, Carl Siegel (1896-1981), Jean Leray, Andr Weil, Henri Cartan, Andrei Kolmogorov (1903-1987), Lars Ahlfors, Oscar Zariski (1899-1986), Hassler Whitney, Mark Krein, Shiing-shen Chern, Paul Erds, Kunihiko Kodaira, Hans Lewy, Samuel Eilenberg, Atle Selberg, Kiyoshi Ito, Peter Lax, Friedrich Hirzebruch, Lars Hrmander, nomi che ogni matematico dovrebbe conoscere. La lista arriva fino al 1988, perch non abbiamo trovato altre informazioni. Esiste un altro premio importante, il premio Crafoord, che viene conferito ogni 7 anni dall'accademia reale svedese in alcuni campi per cui non esiste il premio Nobel: astronomia, biologia, geofisica, matematica. Tra i matematici lo hanno ottenuto Louis Nirenberg, Vladimir Arnold, Pierre Deligne, Alexandre Grothendieck. Grothendieck poi non lo ha accettato, dicendo tra l'altro che non ritiene che abbia senso conferire questi premi a scienziati che in fondo non ne hanno pi bisogno. Comunque non tutti la pensano cos. Per noi, come pubblico, questi premi sono comodi, perch impariamo a conoscere i nomi pi prestigiosi della matematica mondiale. D. ALBERS/G. ALEXANDERSON (c.): Mathematical people. Birkhuser 1985. Volete conoscere le idee e la vita giornaliera di alcuni dei pi famosi matematici degli ultimi decenni? Qui trovate lunghe interviste con Garrett Birkhoff, David Blackwell, Shiing-shen Chern, John H.ÊConway, H.ÊCoxeter, Persi Diaconis, Paul Erds, Martin Gardner (quello dei giochi), Ronald Graham, Paul Halmos, Peter Hilton, John Kemeny, Morris Kline, Donald Knuth (quello del TEX), Benoit Mandelbrot (che sostiene di aver inventato i frattali), Henry Pollack, George Polya (1887-1985), Mina Rees, Constance Reid (la biografa di Courant e di Hilbert), Herbert Robbins (del Courant/Robbins), Raymond Smullyan, Olga Taussky-Todd, Albert Tucker, Stanislaw Ulam (1909-1984) con moltissime fotografie e dati biografici. Opere generali e di consultazione A Manuali, trattati di matematica generale M Monografie MB Bibliografia P Proceedings, miscellanee, collane generali O P AMS Collana dell'AMS P ICM Congressi Matematici Internazionali P IND Collana dell'INDAM P UMI Convegni dell'UMI WDM Indirizzario mondiale dei matematici X Dizionari, repertori di matematica Come abbiamo detto, purtroppo molto incompleta la collezione dei Proceedings dei Congressi Matematici Internazionali. La collana dell'AMS, citata i.g. con il titolo Symposia in pure Mathematics, importante e contiene spesso esposizioni panoramiche di una disciplina. H. EBBINGHAUS e.a.: Numbers. Springer 1991. Il libro di Ebbinghaus e.a. presenta, a livello avanzato, ma partendo dagli inizi e in modo molto esauriente, alcuni aspetti della matematica elementare, legati al concetto di numero e delle sue generalizzazioni. E' un libro estremamente ricco, scritto da alcuni dei pi famosi autori matematici tedeschi di oggi. Si inizia con i numeri naturali, interi, razionali, seguono i numeri reali, descritti mediante sezioni di Dedekind, successioni di Cauchy, successioni decrescenti di intervalli, e metodo assiomatico, il 3¡ capitolo tratta dei numeri complessi e il loro significato geometrico, segue il teorema fondamentale dell'algebra, che dice che ogni polinomio non costante con coefficienti complessi possiede una radice nell'ambito dei numeri complessi, il 5¡ capitolo interamente dedicato al numero ¹, i suoi legami con le funzioni trigonometriche e le sue rappresentazioni mediante serie e prodotti infiniti. Dopo questi numeri classici seguono le generalizzazioni: Quaternioni e il loro uso nella rappresentazione delle rotazioni nello spazio tridimensionale, i numeri di Cayley, tutto inquadrato nella teoria delle algebre con molto spazio concesso all'uso della topologia nella dimostrazione di teoremi puramente algebrici. Un'algebra uno spazio vettoriale che allo stesso tempo e in modo compatibile con la struttura di spazio vettoriale un anello (non necessariamente commutativo): l'esempio classico l'algebra delle matrici nxn su un corpo. Ogni numero complesso c pu essere identificato con una matrice, quella matrice che descrive l'applicazione lineare da C in C che si ottiene se si moltiplicano tutti i numero complessi con c, in modo tale che all'addizione e alla moltiplicazione di numeri complessi corrispondono l'addizione e la moltiplicazione tra le matrici corrispondenti. Qui C viene considerato come spazio vettoriale reale di dimensione 2. In questo modo il corpo dei numeri complessi in pratica la stessa cosa come una certa sottoalgebra dell'algebra della matrici 2x2 con coefficienti reali. In modo simile anche i quaternioni diventano un'algebra di matrici. Il libro termina con un'introduzione all'analisi nonstandard, di cui parleremo fra poco nella logica matematica, e del metodo di John H. Conway (John B. Conway invece autore di uno dei migliori testi di analisi funzionale) di definire i numeri reali mediante giochi. Non ho mai studiato in dettaglio questo metodo, ma ad alcuni piace, i due John Conway sono matematici famosi, e uno degli scopi di questo seminario proprio di suscitare un p quel piacere di giocare con i numeri e con gli oggetti matematici che un'impostazione dottrinaria facilmente impedisce o rovina. L'ultimo capitolo parla di insiemi, assiomi, metamatematica.
Alphamusic - Lectures On Translate this page Sonntag, den 09. Februar 2003. faltings, gerd Lectures on the Arithmetic Riemann-RochTheorem Buch Princeton University Pres VÖ-Datum 2/1992 Bestell-Nr. http://www.alphamusik-shop.de/444/0691025444.html
Extractions: unsere Produktdatenbank wird derzeit aktualisiert. Daher können wir Ihnen im Augenblick nicht das von Ihnen gesuchte Original-Produkt anzeigen, sondern stellen Ihnen interessante Auktionen zu Ihrem Suchbegriff vor. Melden Sie sich jetzt bei Ebay an und bieten Sie für diese interessanten Produkte mit. Ihr Alphamusic-Team Produkt Preis Gebote Endzeit Nabokov: Lectures on Literature (EUROPEAN) EUR 9.00 Alle 1 Artikel bei eBay aufrufen Ausschlussklausel
Extractions: Avetisyan, Karen Yerevan State University ARMENIA avetkaren@ysu.am Gaiko, Valery Belarus State University BELARUS vlgk@cit.org.by Lemaire, Luc Universite Libre de Bruxelles CP 218 Campus Plaine Bd du Triomphe BE-1050 Bruxelles BELGIUM llemaire@ulb.ac.be Van den Bergh, Michel Limburgs Universitair Centrum Dept. WNI Universitaire Campus 3590 Diepenbeek BELGIUM vdbergh@luc.ac.be Van Oystaeyen, Fred BELGIUM francine.schoeters@ua.ac.be Vidunas, Raimundas Antwerp University Universiteitsplein 1 2610 Wilrijk BELGIUM vidunas@uia.ua.ac.be Esteves, Eduardo IMPA 12 Totman Drive, apt. 2 Woburn MA 01801 BRAZIL esteves@math.mit.edu Hefez, Abramo UFF BRAZIL hefez@mat.uff.br Vainsencher, Israel UFPE Departamento de Matematica UFPE Cidade Universitaria 50740-540 Recife BRASIL BRAZIL israel@dmat.ufpe.br Kapranov, Mikhail University of Toronto Department of Mathematics Toronto, Ontario M5S 3G3 CANADA kapranov@math.toronto.edu Andersen, Henning Haahr Aarhus University Matematisk Institut Aarhus Universitet DK 8000 Aarhus C DENMARK mathha@imf.au.dk Branner, Bodil Technical University of Denmark Department of Mathematics Building 303 DK-2800 Kongens Lyngby DENMARK B.Branner@mat.dtu.dk
Table Of Contents . ARTICLE, Fujita, Takao Cancellation Problem of Complete Varieties. 119.. . ARTICLE, faltings, gerd Formale Geometrie und homogene Räume. 123. . . http://134.76.163.65/agora_docs/172177TABLE_OF_CONTENTS.html
Wissenschaftliche Mitglieder Der Max-Planck-Gesellschaft Translate this page Strafrecht. F. faltings, gerd, MPI für Mathematik. FISCHER, Gunter Siegfried,Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung. http://www.mpg.de/mitglieder/
Extractions: Alphabet Institut Sektionen A S trafrecht ALDINGER, Fritz M ... eronomie B BALDWIN, Ian Thomas kologie BALTES, Paul B. B ... hysik C COMRIE, Bernard Sterling A nthropologie CONRAD, Ralf ... sycholinguistik D DASTON, Lorraine W issenschaftsgeschichte DENK, Winfried ... lasmaphysik E EBERT-SCHIFFERER, Sybille B EICHELE, Gregor E ... trafrecht F FALTINGS, Gerd M athematik FISCHER, Gunter Siegfried ... lasmaphysik G GALLWITZ, Dieter C hemie GANZINGER, Harald Bruno ... rnithologie H HACKBUSCH, Wolfgang M athematik in den Naturwissenschaften HAHLBROCK, Klaus ... ellbiologie und Genetik J C hemie JAHN, Reinhard C ... hemie K KAHMANN, Regine M ikrobiologie KAISSLING, Karl-Ernst ... lasmaphysik L LACKNER, Karl P lasmaphysik LAMPERT, Winfried ... ntwicklungsbiologie M MAIER, Joachim F MANDELKOW, Eckhard m ... athematik in den Naturwissenschaften N NAVE, Klaus-Armin M edizin NEHER, Erwin ... ntwicklungsbiologie O OESTERHELT, Dieter B iochemie OEXLE, Otto Gerhard ... iologie P A nthropologie PARRINELLO, Michele
Scientific Members Of The Max Planck Society Law. F. faltings, gerd, MPI for Mathematics. FISCHER, Gunter Siegfried,Max Planck Research Unit for Enzymology of Protein Folding. FREUND http://www.mpg.de/members/
Extractions: Alphabet Institute Sections A Max Planck Institute for Foreign and International C riminal Law ALDINGER, Fritz ... eronomy B BALDWIN, Ian Thomas MPI of C hemical Ecology ... hysics C COMRIE, Bernard Sterling MPI for Evolutionary A nthropology ... sycholinguistics D DASTON, Lorraine MPI for the H istory of Science ... lasmaphysics E EBERT-SCHIFFERER, Sybille B ibliotheca Hertziana - MPI for Art History EICHELE, Gregor ... riminal Law F FALTINGS, Gerd MPI for M athematics ... lasmaphysics G GALLWITZ, Dieter MPI for B iophysical Chemistry ... rnithology H HACKBUSCH, Wolfgang MPI for M athematics in the Sciences ... ell Biology and Genetics J MPI for B iophysical Chemistry JAHN, Reinhard ... iophysical Chemistry K KAHMANN, Regine MPI for Terrestrial M icrobiology ... lasmaphysics L LACKNER, Karl MPI of P lasmaphysics ... evelopmental Biology M MAIER, Joachim MPI for S olid State Research ... athematics in the Sciences N NAVE, Klaus-Armin MPI for E xperimental Medicine ... evelopmental Biology O OESTERHELT, Dieter
Gerd Faltings Moderne Mathematik Translate this page Herausgeber G. faltings G. faltings ist Direktor am Max-Planck-Instiiutfür Mathematik in Bonn Für seinen Beweis der Mordellschen http://home.debitel.net/user/bernd.budnik/HP_Bud/faltings.htm
Extractions: Herausgeber: G. Faltings Sophie Germain Knotentheorie und statistische Mechanik Mehrgitterverfahren Srinivasa Ramanujan und die Zahl Pi Die Klassifikation der einfachen endlichen Gruppen Die Mathematik dreidimensionaler Mannigfaltigkeiten Turingmaschinen Kugelpackungen im Raum Primzahlen im Schnelltest Der Beweis des Vierfarbensatzes Das Fermatsche Theorem Der Beweis des Fermatschen Theorems
The Mathematics Genealogy Project - Index Of FAL Falter, Margret, RheinischWestfälische TechnischeHochschule Aachen,1980. faltings, gerd, Westfälische Wilhelms-Universität Münster, 1978. http://genealogy.math.ndsu.nodak.edu/html/letter.phtml?letter=FAL